
AlllDS

mm
PDBUCAtfONS

NIST
NISTIR 5789-1

U.S. Department of Commerce
National Institute ofStandards and Technology
High Performance Systems and Services Division

Scalable Parallel Systems and Applications Group

Using S-Check ML
Version 3.0

Robert Snelick

Nathalie Drouin

John Antonishek

Mike Indovina

Michel Courson

QC

100

.056

NO. 5789-1

1998
February 1997

Supported by NIST task number 40131 and ARPA task number 7066.

Using S-Check ML
Version 3.0

Robert Snelick

Nathalie Drouin
John Antonishek
Mike Indovina

Michel Courson

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

High Performance Systems and

Services Division

Scalable Parallel Systems and
Applications Group
Gaithersburg, MD 20899-0001

February 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Preface

Preface

Today’s multiprocessors provide unprecedented performance potential, yet

all too often the actual performance obtained is far less impressive. The

inherent complexity of parallel programs makes it far more difficult to cap-

ture true performance measurements on multiple-instruction stream, multi-

ple-data stream (MIMD) architectures. In the absence of MIMD
performance tools, obtaining reasonable parallel program performance is no

small undertaking. The goal of S-Check is to provide a tool that gives the

programmer useful performance information and is portable across

machines as well as architectures.

S-Check automates the techniques of Synthetic Perturbation Screening

(SPS). Synthetic Perturbation Screening systematically perturbs selected

program code segments and determines performance sensitivities of these

selected segments by using the statistical techniques of Design of Experi-

ments (DEX). The resulting sensitivity analysis serves as a basis for perfor-

mance evaluations. The name S-Check is derived from sensitivity analysis

or Sensitivity Check (S-Check). S-Check ML is derived from S-Check’s

Multiple Language (ML) capabilities. We will use the names S-Check and

S-Check ML interchangeably throughout the text.

The concepts of Synthetic Perturbation for performance analysis of parallel

programs were developed in the Parallel Processing Group at the National

Institute of Standards and Technology (NIST) under the direction Dr. Gor-

don Lyon. In addition to Dr. Lyon and the authors, the following have con-

tributed to the project: Dr. Raghu Kacker guided theoretical aspects of the

statistical library developed for the tool; Dr. Joseph Ja’ Ja’ helped formulate

some of the SPS techniques; Dominique Rodriguez wrote much of the

tool’s front end C parser and source code re-generator; Dr. James Filliben

provided insight and examples for presenting statistical results graphically;

Amaud Linz provided assistance in testing the techniques and tool proto-

types. Gordon Lyon also provided the diagram for the cover page. Ken Tice,

Wayne Salamon, and Eric Lagergren read earlier versions of the text and

suggested numerous details for improvement.

S-Check Version 3.0 is available for parallel SGI systems, IBM’s SP

machines, homogenous SUN, SGI, and RS6000 workstation clusters using

Using S-Check 111

Preface

PVM or MPI, and PCs running Linux. S-Check provides support for using

batch queuing systems (BQS) in homogeneous environments (e.g., IBM’s

SP2). S-Check provides interfaces for some of these BQS (e.g., LoadLev-

eler). If the BQS is not supported, the user can provide S-Check with link-

age scripts required for integration. This scheme allows S-Check to run in

many BQS environments. S-Check ML supports multiple languages,

including FORTRAN 77, FORTRAN 90, C, and C-(-i-, however, advanced

editing features are only available in C. Instrumentation code is provided for

C and FORTRAN 90. For other languages (e.g., C-f-t-), the user must supply

the instmmentation code. S-Check provides hooks for this purpose. The

graphical interface is written with the widely available OSF Motif toolkit.

When using this release of S-Check, it is important to remember that some

planned features have not been completed or implemented at all; we point

these out in the manual. This document supersedes NISTIR 5789 (February

1996), Using S-Check, Alpha Release 1.0.

Funding for the project is provided by NIST and the Advanced Research

Projects Agency (ARPA), task number 7066. S-Check is public domain. All

or any parts of it can be used, modified, or incorporated into other systems

without permission from NIST or the authors. However, NIST and the

authors would appreciate credit if the tool or parts of it are used. There is no

warranty, expressed or implied, on the capabilities of the code. Certain com-

mercial products are identified here in order to demonstrate use of the tool.

Identification of such products does not imply recommendation or endorse-

ment by NIST, nor does it imply that the products identified are necessarily

the best available for the purpose.

Send questions, comments, and bugs to scheck-tool@www.scheck.nist.gov.

For information on how to obtain S-Check and for updates access the http://

www.scheck.nist.gov/scheck Web site.

Robert Snelick

Nathalie Drouin

John Antonishek

Mike Indovina

Michel Courson

Gaithersburg, MD.
October 1997

IV Using S-Check

Table of Contents

Preface iii

INTRODUCTION Using S-Check ML 1

What is S-Check? 1

S-Check ML Version 3.0 2

Built-in Help 3

CHAPTER 1 SPS Basics 5

CHAPTER 2 Getting Started 9

Overview of an S-Check Experiment 9

S-Check’s Directory/Experiment Layout 11

Creating/Opening an Experiment 12

CHAPTER 3 Experiment Configuration 15

Configuring your Experiment 15

Declaring the platform type 15

Setting up LoadLevelerjobs. 18

Setting up POEjobs 23

Setting up PVMjobs 24

Setting up LAM MPljobs. 26

Using the Generic platform. 28

Selecting your Language Type 28

Connecting your application to S-Check 29

Selecting the experiment type 30

CHAPTER 4 Instrumenting the Test Program 33

Factor Editor 33

Selecting Factors 35

Instrumenting lines with preprocessor commands 38

Factor Profile and Automatic Factor Selection 38

Using S-Check V

Table of Contents

Factor Management 40

Setting The Response Interval 40

Instrumenting Programs Other Than C 43

Instrumenting FORTRAN Programs 43

CHAPTER 5 Experiment Control 45

Experiment Control Window 45

Experiment Maintenance and Convenience

Functions 46

Launching Factor Editors 46

S-Check Messages 46

Setting the amount ofdelay 48

Selecting a DEX plan: 49

Setting Replication 52

Experiment Information Area 53

Running an Experiment 53

Viewing Internal Results 55

Obtaining an External Profile 57

CHAPTER 6 Viewing Performance Data 59

List Effects 59

Plot Effects 62

Saving Results 65

Viewing Multiple Displays 65

CHAPTER 7 Warnings and Bugs 67

Warnings 67

Bugs 69

VI Using S-Check

Table of Contents

GLOSSARY Glossary 71

REFERENCES References 73

APPENDIX A Error Messages 75

APPENDIX B Standard Error Table 79

APPENDIX C Code Instrumentation for the C
Language 81

APPENDIX D Linking S-Check to Batch Queuing
Systems 83

INDEX Index 91

HOW TO INSTALL S-CHECK

S-CHECK QUICK-REFERENCE

Using S-Check vii

Table of Contents

VUl Using S-Check

INTRODUCTION Using S-CheckML

Robert Snelick

Nathalie Drouin

John Antonishek

Mike Indovina

Michel Courson

What is S-Check?

S-Check is a software sensitivity checker designed to help you locate per-

formance bottlenecks in parallel (and complex serial) programs. The tool

S-Check provides the mechanisms to:

• determine the impact of computational code segments

• determine the cost of synchronization barriers

• detect interdependencies amongst code segments

• determine how well a program or code segment scales (not yet imple-

mented)

S-Check employs and automates statistically designed experiments to iden-

tify sources of performance degradation. The host system can be a serial,

parallel or networked (MPI/PVM-like) layout. The tool implements the

techniques of Synthetic Perturbation Screening (SPS) developed at the

National Institute of Standards and Technology (NIST). The methodology

demands laborious experiment setup and execution procedures. S-Check

automates much of SPS drudgery via an easy-to-use graphical user inter-

face.

Using S-Check 1

S-Check ML Version 3.0

S-Check provides easy selection of test parameters, code instrumentation,

experiment plan setup, experiment execution, calculation of results, and

graphical presentation of results. S-Check is designed to accommodate

users with varied SPS and design of experiment (DEX) skills. SPS profi-

cient users manually control experiment details while novice users are given

mechanisms for automatic setup and testing.

SPS introduces the notion of inserting artificial delays into the source code

and capturing the effects of such delays by employing design of experiment

techniques. Performance information takes the form of effects that corre-

spond to source code segments or interactions among code segments.

Effects are ranked by magnitude. Source code segments with the highest

effects are likely candidates for bottlenecks. Based on variations of these

techniques other performance information specific to a given architecture

can also be obtained.

This document is provided as a user’s guide to S-Check; it is not intended to

describe or explain SPS techniques. However, a brief superficial overview

of the process is given in the next chapter, SPS Basics. A detailed descrip-

tion of SPS can be found in the following publications; “Synthetic-perturba-

tion tuning of MIMD programs” [1], “Synthetic perturbation techniques for

screening shared-memory programs” [2], and “A simple scalability test for

parallel code” [6]. An overview of the tool with case studies can be found in

“S-Check: A Tool for Tuning Parallel Programs” [3] or “Tuning Parallel and

Networked Programs with S-Check” [4].

For a Quick Reference Guide on S-Check usage look on the back of this

manual. To see an example of an S-Check session, see “S-Check, by Exam-

ple” [5]. Here the user is guided through a simple step-by-step example

using S-Check. This is a good starting point to familiarize yourself to the

basic S-Check concept. The user’s guide can then be used more effectively

as a reference guide and for using advanced S-Check features.

S-Check ML Version 3.0

S-Check ML Version 3.0 is available for parallel SGI systems, IBM’s SP

machines, homogenous SUN, SGI, and RS6000 workstation clusters using

PVM or MPI, and PCs running Linux. S-Check provides support for using

2 Using S-Check

Built-in Help

batch queuing systems (BQS) in homogeneous environments (e.g., IBM’s

SP2). S-Check provides interfaces for some of these BQS (e.g., LoadLev-

eler). If the BQS is not supported, the user can provide S-Check with link-

age scripts required for integration. This scheme allows S-Check to run in

many BQS environments. Details of how to integrate S-Check and a BQS
is described in Appendix D.

S-Check ML supports multiple languages, including FORTRAN 77, FOR-
TRAN 90, C, and C-h-i-. However, advanced editing features are only avail-

able in C. S-Check versions prior to 3.0 only support the C language.

Instrumentation code is provided for C and FORTRAN 90. For other lan-

guages (e.g., C-h-i-), the user must supply the instrumentation code. S-Check

provides hooks for this purpose. The graphical interface is written with the

widely available OSF Motif toolkit.

The name S-Check is derived from sensitivity analysis or Sensitivity Check

(S-Check). S-Check ML is derived from S-Check’s Multiple Language

(ML) capabilities. We will use the names S-Check and S-Check ML inter-

changeably throughout the text.

In this release, the framework for some features exists in the interface but

have not yet been implemented. These features are grayed oMf—they are

inaccessible. For example, scaling tests are not yet implemented. Some fea-

tures that are not available in this release are nonetheless described.

Built-in Help

Built-in help is available while using S-Check. On various windows, access

to the help service is provided with Help buttons. Click on the button to start

the Help service. A list of topics are displayed. Click on the appropriate

topic for help information.

Using S-Check 3

Using S-Check ML

4 Using S-Check

CHAPTER 1 SPS Basics

S-Check is based on the techniques of Synthetic-Perturbation Screening

(SPS) developed by Lyon, et al [1, 2]. A brief summary of that work is pre-

sented here. A reader familiar with the technique can skip to the next chap-

ter, Getting Started.

The SPS technique inserts artificial code (delays) within segments of a par-

allel program and evaluates the effect of the delays on performance. The

delays simulate an adjustment in efficiency in these code segments. SPS

assumes that if a program code segment is highly sensitive to slight pertur-

bations, then comparable segment improvements will boost performance

correspondingly. The process gives a sensitivity analysis from which pro-

gram problem areas can be identified. The underlying SPS foundation is the

statistical methods of design of experiments (DEX). Diagram 1 summarizes

the SPS technique.

Within this framework, more specialized problems can be solved. These

issues are quickly addressed below.

Screening test. At an early stage of analysis, one is primarily concerned

with identifying and discarding factors that have no significant effect on the

program response. Screening is an investigation strategy that efficiently iso-

Using S-Check 5

SPS Basics

lates important factors from a pool of candidates. Insignificant factors can

then be removed from subsequent investigations, thus narrowing the scope

of the analysis. Screening is an identification step that may be used to make
a quick, preliminary assessment of a large application.

Barrier test. SPS can be used to address the issue of bottlenecks due to

synchronization in the shared memory programming model. Processes that

hit a barrier at widely dispersed times cause processors to idle for a signifi-

cantly long period of time. The test objective is to identify barriers where

such idle time overheads occur. Effects must be paired up and compared for

analysis. In other words, two factors (or perturbations) are required per bar-

rier. One is inserted immediately before the barrier, the other one immedi-

ately after. The barrier test requires a special factor treatment—not explained

here. For each individual pair, the difference in the perturbation’s respective

effect gives an indication of the cost associated with each synchronization.

The synchronization cost increases with the difference in the two effects. If

the paired effects are about the same the synchronization cost is marginal.

Note that screening experiments and barrier tests must be conducted sepa-

rately as factor treatments in these two cases are not comparable. See the

Reference [2], “Synthetic perturbation techniques for screening shared-

memory programs” for a thorough explanation of the technique.

Scaling test. Code scalability determines how well parallel code avoids

becoming a bottleneck as its host computer is made larger. Statistically

designed experiments handle program and system together as a single

entity. The system size {i.e., the number of processors assigned to the pro-

gram) comes as an additional factor to the regular set of input perturbations

{i.e., segments of code suspected of being performance bottlenecks). A
large negative number for the effect associated with the system size means

the whole program is sensitive to scalability, since the response time

decreases with the system size. To determine which code segment improve-

ments best promote parallel speedup the effects of interactions between

code segments and the system size are studied. A large negative number for

these interaction effects means the code seems to be scalable, since the sen-

sitivity to delays decreases with the system size. See Reference [6] for

details.

6 Using S-Check

SPS Basics

delay(O)

delay(O)

Original Source Code

while(x>y)
{

}

send(,..);

do_computation{...);

Instrumented Source Code

while(x>y)
{

^

delay(a);

delay(b); send(...);

do_computation(delay(c);...}

delay(1)

delay(O)

delay(1)

delay(1)

delay(1)

o

R~
1

\ r 1 r ^

Effect Source

0.44 A
4.54 B
0.07 AB
1.21 C
0.02 AC
0.34 BC
0.00 ABC

STD ERR = +/- 0.11

Step 1: Identify suspected bottleneck locations (called

factors). For example, three factors are selected, a while

loop, the send() function call, and the function

do_computation{}. For illustrative purposes, we named

the factors A, B, and C respectively.

Step 2: At each selected location, S-Check instruments

the code with the capability to switch ON or OFF
delays (ON = 1, OFF = 0). The delay simulates an

adjustment in code efficiency.

Step 3: Guided by S-Check’s DEX library, multiple

versions of the program are generated, each with a dif-

ferent pattern of delays (DEX plan). As shown, the first

version represents the original program since no delays

(all 0) are activated. The next version, variant 101, will

run with delay added to code segments represented by

A and C; code segment B is undisturbed.

Step 4: Each version of the program is executed with

delay settings and corresponding response time

recorded. The response can be any useful measure-

ment; typically the response is the total program execu-

tion time.

1 8
Step 5: The recorded response values {R -R) and

the DEX plan are used to solve for effects. In short, an

effect of a factor is the difference between two average

responses, one corresponding to executions when

delay was ON for the factor, and the other, when the

delay was OFF. An effect is a measure of how sensitive

a code segment is to perturbation. The evaluations are

quantitative and indicate the relative strength of any

performance bottleneck.

Step 6: Examine and improve bottlenecks. Investiga-

tion (improvement) of code sections proceeds with the

highest ranked effect in the list until a desired perfor-

mance level is obtained. Our investigation would begin

with the code segment represented by B (sendQ), since

it is the most sensitive to perturbation. Alternatively,

further exploration of the program can be performed

by discarding some or all factors and adding more fac-

tors and then retesting. The process can be iterative.

Diagram 1. Summary of SPS Technique

Using S-Check 1

SPS Basics

8 Using S-Check

CHAPTER 2 Getting Started

Overview ofan S-Check Experiment

S-Check’s basic notion is an experiment. An experiment defines all the

parameters needed to setup and run the SPS process. S-Check views an

experiment as an object that can be created, opened, initialized, saved, exe-

euted, displayed, and modified. Multiple experiments may be instantiated in

an S-Check session. The following list provides an overview of the basic

steps that need to be performed (from the user’s perspective) in an S-Check

experiment:

• Create/Open an experiment

• Declare the platform type

• Configure the test program

• Select the experiment type

• Select program test points

• Define a response interval

• Select an experimental plan

• Select experiment replieation

• Run the experiment

Using S-Check 9

Overview of an S-Check Experiment

• View experiment results

(1) Start Up
(A) Select new experiment
or rerun/modify saved

y^periment.

(2) Configure

(A) Indicate configuration
information to S-Check,
e.g., platform, test code,
compiler/run time flags,

etc.

(B) test type

/^3)Experiment Control

(A) Set experiment parameters
1 . launch code editors (3a)

2. select DEX plan

3. set delay amount
(B) Build instrumented version

of test program
(C) execute program variants

as directed by parameters

above.

(D) monitor experiment
progress. J

(3a)Code Editors

(A) Choose test points

1 . Manual
2. Automatic

(B) Set response interval

(4)View Results

(A) List Effects

(B) Plot Effects

FIGURE 1. S-Check Usage Flow

S-Check assists in or performs each of these steps. Figure 1 shows a skele-

ton of S-Check’s window interface layout. In the first two windows, Start-

up (1) and Configure (2), system initializations and test code setup are per-

formed. Experiment setup and control is handled in the Experiment Control

10 Using S-Check

S-Check’s Directory/Experiment Layout

window (3). Test points are selected with Code (Factor) Editor windows

(3a). The List and Plot windows (4) display results. The process can be

repeated and entered at any step to refine the sensitivity analysis.

In addition to providing the necessary functions to run an experiment, S-

Check organizes experiments by providing maintenance functions such as

saving the experiment configuration, control settings, and results. S-Check

also provides status information of the experiment. It indicates the number

of test parameters selected, number of runs required to complete the experi-

ment for a given plan type and replication setting, an estimate on how long

an experiment will run, an estimate of the delay magnitude, state of an

experiment, and trial number of a running experiment. Results from experi-

ments take the form of rank ordered lists or graphical plots of effects. This

data can be saved as postscript files.

S-Check’s Directory/Experiment Layout

S-Check requires that all files needed to build the executable test program

reside in the directory in which S-Check was started. As illustrated below in

Figure 2, an experiment is saved in a sub-directory of the starting directory,

called the experiment directory. The first level of this hierarchy is named

“.scheck”. Sub-directories with the name of the experiment are then created

under the “.scheck” directory. These directories contain internal S-Check

information for an experiment. To open a saved experiment, you must start

S-Check in the appropriate experiment directory.

<experiment directory>

test 1.0 test2.0

FIGURE 2. S-Check’s directory hierarchy

Using S-Check 11

Creating/Opening an Experiment

To invoke S-Check, type the following command:

scheck

S-Check first displays a working dialog while it is performing system ini-

tializations. When this is completed the window for creating and opening

experiments is launched.

Creating/Opening an Experiment

S-Check starts by displaying the Experiment List Window, as seen in Figure

3. The experiment directory name is displayed near the top of the Experi-

ment List Window. S-Check will look here for work set files. The Experi-

ment List Window displays previously defined experiments as well as an

area for creating new experiments. To create a new experiment, enter the

name of the experiment in the New Experiment Name field and select the

Open button. To open a previously defined experiment double-click on the

desired experiment in the experiment list.

Either of these actions brings up the Experiment Control Window (to be

described shortly). This action also brings up the Configuration Window if

the configuration for the experiment has not yet been defined. To delete an

experiment, click on the experiment name and press Delete. To exit the

Experiment List Window without requesting any tasks, select the Cancel

button. To exit S-Check click on the Quit S-Check button. The Cancel but-

ton will also exit S-Check if no experiment is active.

Creating a new experiment from a previously defined experiment can really

economize experiment setup time. Simply recall an experiment with a suit-

able configuration and use the Save As command on the Experiment Control

Window menu. Modifications for the new experiment can now be made

without having to re-initialize the bulk of experiment settings.

The Experiment List Window has two main menus: Results and Info. The

menu selection Multiple Display, under Results, allows you to view results

of previously saved experiments. The details of this are explained in View-

ing Results. The Info menubar provides on-line information about S-Check.

12 Using S-Check

Creating/Opening an Experiment

experiment list

FIGURE 3. Experiment List Window

Using S-Check 13

Creating/Opening an Experiment

14 Using S-Check

CHAPTER 3 Experiment Configuration

Configuring your Experiment

The Configuration Window (Figure 4) supplies information to S-Check

about how to build the executable program, the language type, how and

where to run the experiments, and the type of the experiment.

The Configuration Window is invoked automatically upon creation of an

experiment. Alternatively, it can be explicitly brought up from the Experi-

ment Control Window under the File and Configure menu selections.

Declaring the platform type

Use the platform type Option Menu to pick the platform you will run your

experiments on. Specifying a platform type provides information to S-

Check for both code instrumentation and about how to run your executable.

S-Check supports a number of platforms. The UNIX selection is the default.

Pick this type for running serial codes on workstations or parallel codes

where executables run as simple Unix commands. The SGI Challenge is an

Using S-Check 15

Declaring the platform type

example of such a system. The platforms currently supported for the UNIX
selection include Sun, SGI, and IBM RS6000 workstations and PCs mnning

Linux.

FIGURE 4. Configuration Window

When choosing the UNIX platform type, the user has the option of declar-

ing a communication library. Click on the Setup button to the right of the

platform Option Menu to bring up the Unix Setup Window (Figure 5). Here

16 Using S-Check

Declaring the platform type

a communication library can be selected. Deelaring a communieation

library (e.g., IRIX IPC) allows for automatic factor selection of the commu-
nication mechanisms. Automatic Factor Selection is discussed in Chapter 4.

The None seleetion means that there is no default communication library.

The IRIX IPC selection means that the IRIX IPC library ealls can be auto-

matically detected and instrumented. Modifications to the S-Check source

code can be made easily to add additional communication libraries.

FIGURE 5. Unix Setup Window

S-Check can run jobs in other parallel and cluster environments as well. For

these systems additional setup information is required. A dialog box will

automatically appear upon selection of one of these platforms. The specifie

dialog box ean be explicitly invoked (to change settings) by selecting the

Setup button. In addition to the UNIX platform diseussed above, S-Check

supports POE, LoadLeveler, PVM, and LAM (MPI) jobs. The Generic plat-

form is provided so that other scheduling systems can be linked to S-Check.

However, the user (or system installer) must provide certain shell scripts

necessary to link the systems (see Appendix D). Speeific setup instructions

for each of these platforms is given below.

Using S-Check 17

Declaring the platform type

Setting up LoadLeveler jobs.

Selecting a LoadLeveler job requires that you provide S-Check with a job

command file. A job command file is a script that instructs Loadleveler how
to schedule and run your job. The LoadLeveler Setup Window (Figure 6)

will automatically appear upon selection of LoadLeveler platform. Enter the

command file directly or select it using the file selection browser.

Running jobs with LoadLeveler may require that you provide additional

information to S-Check in your job command file. You can run the job by

providing a command file with a minimal set of LoadLeveler keywords or

by modifying your existing command file by adding special S-Check tags.

The former method combines your command file and S-Check default vari-

ables to define your job. The latter replaces special tags (that you define)

with S-Check variables in your command file. These tags can define the test

program, instrumentation environment variables, etc. The following exam-

ples illustrate how to setup SP LoadLeveler jobs using S-Check.

FIGURE 6. LoadLeveler Setup Window

18 Using S-Check

Declaring the platform type

The simplest way to connect your application to S-Check to run LoadLev-

eler jobs is to provide a job command file containing a minimal set of Loa-

dLeveler keywords and let S-Check add its variables. Figure 7 shows an

example of a simple job command file.

#!/bin/ksh

#

simple.cmd: for loadleveler 1 .2 05/30/96

#

#

@ class = Small

@ min_processors = 4

@ max_processors = 4

@ jobjype = parallel

@ queue

FIGURE 7. Simple Job Command File

Prior to execution, S-Check takes the command file and adds its variables

necessary for defining the job. This includes statements which facilitate

code instrumentation and program execution. The set of minimal keywords

and keyword arguments needed to run a job may vary from system to sys-

tem, you will need to determine these requirements for your particular

setup. The commands in Figure 7 are sufficient for our testbed IBM SP2

system.

An alternative method for running LoadLeveler jobs is to use your existing

command file and make modifications using S-Check variable tags. Figure

8 shows an example of a command file for running a job using LoadLeveler

on an IBM SP2. Table 1 lists S-Check variables tags that can be used in

addition to or to replace LoadLeveler keyword arguments and shell com-

mands.

Using S-Check 19

Declaring the platform type

#!/bin/ksh

run2.cmd: for loadleveler 1 .2 05/15/96

#

#

@ program

@ initialdir

@ output

@ error

@ requirements

@ class

@ min_processors

@ max_processors

@ jobjype

@ notification

@ checkpoint

@ restart

= qs

= /home/rob/quicksort

= $(initialdir)/$(program).$(C!uster).out

= $(initiaidir)/$(program).$(Cluster).err

= (Arch == “R6000") && (OpSys == “AIX41”)

= Small

= 4

= 4

= parallel

= Never

= no

= no

@ queue

initialization code (e.g., code to broadcast the data file in /tmp on ever y machine

in the cluster before starting)

/usr/bin/poe /home/rob/quicksort/qs -p 4 -d 1048576

clean up code

FIGURE 8. User’s Original Job Command File

For example, wherever the LoadLeveler keyword program is defined and

used, its argument needs to be replaced with the @SCHECK_program@
tag. Figure 9 shows how the original job command file in Figure 8 can be

transformed so that S-Check experiments can be conducted.

In general, you substitute shell commands and LoadLeveler keyword argu-

ments with corresponding S-Check variable tags. You build a job command
file as before, but now S-Check tags are use in place of (and/or in addition

to) certain variables. The first three S-Check tags in Table 1

20 Using S-Check

Declaring the platform type

(@SCHECK_initialdir@, @SCHECK_program@,
@SCHECK_arguments@) correspond to LoadLeveler keywords.

@SCHECK_trialnumber@ and @SCHECK_lasttrial@ provide informa-

tion about the S-Check experiment. @SCHECK_delay@,
@SCHECK_factors@, and @SCHECK_variables@ are used in instrumen-

tation of the test program. @SCHECK_delay@ is the environment variable

that contains the delay value as obtained from S-Check.

@SCHECK_factors® contain an encoded string that set S-Check factors

ON or OFF. @SCHECK_variables@ tag sets and exports the environment

variables previous discussed. This variable is explicitly added to the job

command file if it is not found. If it is supplied by the user, it should pro-

eeed the test program invocation {i.e., /usr/bin/poe ...).

Tag Modification

@SCHECKJmtialdir@ substitute for all instances of LoadLeveler keyword

initialdir.

@SCHECK_program@ substitute for all instances of LoadLeveler keyword

program.

@SCHECK_arguments@

substitute for all instances of LoadLeveler keyword

arguments. Otherwise place tag on command line if

user arguments are defined in the Configuration

Window.

@SCHECK_trialnumber@ specifies the trial number of S-Check job, starts at

1.

@SCHECKJasttrial@ indicates the last trial in S-Check job, set to 1 if last

trial, 0 otherwise.

@SCHECK_delay@ S-Check environment variable SCHECKDELAY.
Emits the delay value parameter set in S-Check.

@SCHECK_factors@ S-Check environment variable SCHECKEAC-
TORS. Encoded variable for setting S-Check fac-

tors (ON or OFF).

@SCHECK_variables@ shell command that sets and exports S-Check envi-

ronment variables.

TABLE 1. S-Check’s tags for command files

Using S-Check 21

Declaring the platform type

#!/bin/ksh

#

run2.cmd: for Loadleveler 1 .2, S-Check 1.0, 05/15/96

#

#

@ program

@ initialdir

@ output

@ error

@ requirements

@ class

@ min_processors

@ max_processors

@ jobjype

@ notification

@ checkpoint

@ restart

@ queue

= @SCHECK_program@

= @SCHECKJnitialdir@

= $(initialdir)/$(program).@SCHECK_trialnumber@.out

= $(initialdir)/$(program).@SCHECK_trialnumber@.err

= (Arch == “R6000”) && (OpSys == “AIX41”)

= Small

= 4

= 4

= parallel

= Never

= no

= no

@SCHECK_variables@

if
[
@SCHECK_variables@ -eq 1] ;

then

initialization code (e.g., code to broadcast the data file in /tmp on every machine

in the cluster before starting)

/usr/bin/poe @SCHECKJnitialdir@/@SCHECK_program@ ©SCHECK _arguments@

if
[
@SCHECKJasttrial@ -eq 1] ;

then

clean up code

fi

FIGURE 9. Modified Job Command File for S-Check

Prior to submission to LoadLeveler the final job command file is created.

The tags are substituted as directed by the parameters set in S-Check. For

example, S-Check will substitute the instmmented version (created by S-

Check) of the test program at each @SCHECK_program@ tag. To inspect

the job command file that is submitted to LoadLeveler, look at the

22 Using S-Check

Declaring the platform type

“scheck./tame.cmd” file in the experiment_directoryI.schccki

experiment_name directory.

Although tests have only been run with LoadLeveler on an IBM SP2

machine, it is possible to run LoadLeveler jobs with S-Check on other

homogenous clusters. However, testing of LoadLeveler outside the

domain of an SP System has not been performed.

Other LoadLeveler options in the LoadLeveler Setup Window that can be

defined include the communication library, the number of processors, and

the job control scripts. Selecting a communication library allows automatic

selection and instrumentation of the library calls. The job control scripts

{i.e., run, status, and kill) control the LoadLeveler job. The default settings

for these scripts are given on the LoadLeveler Setup Window. The user can

modify these or create their own LoadLeveler scripts if desired; see Appen-

dix D for details.

Setting up POE jobs

Selecting the SP2 POE platform also requires setup information. Upon

selection of SP2 POE, the POE Arguments Window (Figure 10) will appear.

Enter the argument value next to the argument qualifier for each argument

you wish to set. See the example set up in Figure 10. Once you have set the

arguments needed to run your executable click on the OK button. Note that

at least one argument must be set, otherwise the platform type is reset to the

default type (i.e., UNIX). Selecting a message passing library allows auto-

matic selection and instmmentation of the library calls.

The POE Arguments Window can be popped up at any time for modifica-

tion of arguments by selecting the Setup button to the right of the platform

Option Menu. For more information on POE arguments, see the RS6000/SP

Parallel Environment: Operation and Use manuals [7].

Using S-Check 23

Declaring the platform type

FIGURE 10. POE Arguments Window

Setting up PVM jobs

S-Check can be used to run PVM programs directly in a PVM environment

such as a workstation cluster. However, currently support is limited to

homogeneous clusters. PVM programs can be run in other environments as

24 Using S-Check

Declaring the platform type

FIGURE 11. PVM Hostfile Selection Window

well, for example, LoadLeveler. To run PVM programs in environments

other than a direct PVM environment, see the appropriate section in this

chapter. This section describes how to run PVM jobs in a PVM environ-

ment.

To run a PVM job within S-Check you must first install and have PVM run-

ning. Configuring a PVM job proceeds much like a plain UNIX job

described earlier, with a few exceptions. First, select PVM from the Plat-

form Option menu. This brings up the PVM Hostfile Selection Window

(Figure 11) requesting that you to select a PVM Hostfile defining the cur-

rently running PVM configuration. Select the hostfile and click OK.

Using S-Check 25

Declaring the platform type

S-Check makes certain assumptions about your PVM environment and

imposes its own restrictions, these are outlined below:

• all hosts in the currently running PVM are homogeneous and are listed

in a PVM “hostfile”.

• S-Check is running on one of the hosts in the PVM (remote job execu-

tion is not yet available)

• each host in the PVM has enough disk space to store a copy of the instru-

mented executable, and a directory called $USER/pvm3/bin/$ARCH
exists on each host which can be written to via “rep” from the host cur-

rently running S-Check (i.e., .rhosts permissions have been set up)

• the user has copied any data files which are needed on the remote nodes

prior to running the experiment. Note that S-Check automatically copies

the instrumented executable only to the remote nodes and not their asso-

ciated data files.

• the application is SPMD and contains at least one call to pvm_spawn() in

order to parallelize itself. The file(s) containing the pvm_spawn(

)

call(s)

have been loaded into the work set on the Configuration Window
(described in the section. Connecting your application to S-Check). Note

that the instrumented application will be given a different executable

name than the one used by the pvm_spawn() in the un-instrumented

code. S-Check will modify the pvm_spawn() to use the name of the

instrumented executable. To disable this behavior for a specific

pvm_spawn(

)

call simply rename it to scheck_pvm_spawn().

In addition to these points, remember to add the “-I$PVM_/?(90r/include”

to the Default CFLAGS settings and the “-L/$PVM_ROOT/\ih/

$PVM_ARCH -lpvm3” to the Id FLAGS settings (where PVM_ROOT is the

value of your PVM_ROOT environment variable) in the configuration text

fields described in the section. Connecting your application to S-Check.

Setting up LAM MPI jobs.

S-Check can be used to run LAM programs directly in a LAM environment

such as a workstation cluster. However, currently support is limited to

homogeneous clusters only. When using S-Check to run LAM programs, S-

Check makes certain assumptions about your environment:

26 Using S-Check

Declaring the platform type

• LAM is installed, and the virtual machine has been booted.

• All hosts in the currently running LAM are homogeneous and are listed

in a LAM “boot schema.”

• S-Check is running on the one of the hosts in the LAM virtual machine

(remote job execution is not yet available)

• The file systems of each host are separate, i.e., not shared (if any of the

hosts share a filesystem it doesn’t cause a problem, however S-Check

will “rep” the instrumented executable to each after the build).

• Each host in the LAM virtual machine has enough disk space to store a

copy of the instrumented executable in the user’s home directory on that

system and the user’s home directory is in their executable path. It is also

assumed that the user has permission to “rep” files to their home direc-

tory on each of the hosts in the LAM from the computer on which S-

Check is being run.

• The user has copied any data files which are needed to the remote nodes

prior to running the experiment. Note that S-Check automatically copies

the instrumented executable only to the remote nodes and not their asso-

ciated data files.

• The application is SPMD. Note that execution scripts (lam_run.sh,

lam_status.sh, and lam_kill.sh) have been provided which assume the pro-

gram can be run via the LAM utility mpirun without the use of an appli-

cation schema file. Note, the instrumented application will be given a

different executable name than the one you are currently using.

• The response interval has been placed around a sequential piece of code,

which has access to the file system upon which S-Check is running (this

practice should be followed for any application used with S-Check).

When configuring an experiment for use with LAM the following steps are

necessary; (note, we assume your LAM software is installed in the directory

/usr/local/lam60 .)

• Set the Platform Type to “LAM”

• On the LAM Setup Window (Similar to Figure 6, LoadLeveler Setup

Window) set the path to the LAM application schema (hostfile) which

defines the currently running LAM configuration.

• Set the compiler to “hoc”

Using S-Check 27

Selecting your Language Type

• Add “-l/usr/local/lam60/h” to the Default CFLAGS setting.

Using the Generic platform.

S-Check provides a method to link to other Batch Queuing Systems (BQS)

provided that certain shell scripts can be written to give S-Check the capa-

bility to run, kill, and determine the status of a job. A description and exam-

ple of how to link S-Check to a Batch Queuing System is described in

Appendix D. This capability is a natural by-product from the integration of

S-Check and LoadLeveler. The Generic hook is provided for users wanting

to connect S-Check to non-supported BQS. The scripts must be provided at

installation, prior to starting up S-Check. The setup for a Generic platform

experiment can then proceed as a LoadLeveler setup does.

Selecting your Language Type

S-Check ML version 3.0 supports multiple languages, including C, C-n-,

and FORTRAN. However, advanced editing features are only available in

the C language. These features include error detection, automatic factor

selection, and statement level instrumentation. Appendix C describes how
the instrumentation process for the C language is implemented. Instrumen-

tation for other languages is line oriented.

S-Check supports four language types: C, FORTRAN, Pre-instrumented,

and Generic. Functionality for the language types differ signifieantly. The C
language editors provides full editing capabilities. A scaled down line ori-

ented editor is used for FORTRAN and other languages. It provides the

basic functions needed to instrument S-Check experiments. S-Check Ver-

sion 3.0 code instrumentation for FORTRAN is written in FORTRAN 90.

Therefore, you must use a FORTRAN 90 compiler to use the built-in FOR-
TRAN instrumentation. Your code, however, can be written in either FOR-
TRAN 77 or FORTRAN 90. With the Pre-instrumented selection you can

run programs that you have pre-instrumented. Pre-instrumenting a program

entails entering the instrumentation code into your program with the use of

an external editor such as vi. If you use a pre-instrumented program, you

don’t have to provide source file information to S-Cheek, only the name of

28 Using S-Check

Connecting your application to S-Check

the executable (in the Executable Text Field). The Generic selection can be

used for any language that you can provide instrumentation code for. S-

Check provides the hooks to add instrumentation code so that most lan-

guages can be incorporated. The factor editor works the same as it does for

FORTRAN. Sample instrumentation code for the C and FORTRAN 90 lan-

guage can be found in the source code distribution. Details of factor selec-

tion and instrumentation can be found in Chapter 4.

Connecting your application to S-Check

The next step is to provide information so that S-Check can build your test

program (see Figure 4). S-Check requires that you select files and provide

flags that are needed to compile your program. S-Check also provides an

area to declare command line arguments for the executable. The list, Direc-

tory Contents, names all allowable files from which an executable can be

built. Select a file and enter any special C-flag(s) needed for that file. Push

the add button to enter the file into the work set. The work set defines the

files needed to build the executable. This list also defines the set of files that

can be edited for choosing test locations (factors). The work set list appears

on the Experiment Control Window. To remove a file from the work set,

select the file and push the delete button.

Set default C-flags that apply to all C files in the Default CFLAGS text field

(also use the C-flag field for other languages). For example, to instruct S-

Check to look in the include directory named /usr/local/include, enter

-l/usr/local/include

in the Default CFLAGS text field.

If you are using special libraries for communication primitives you will

need to indicate the location of the include files in the Default CFLAGS text

field as well (e.g., /usr/lpp/ppe.poe/include). Likewise the loader/linker

flags are set in the Id FLAGS text field. To specify a compiler, other than the

default, enter the name of the compiler (path, if necessary) in the Compiler

text field. Command line arguments for the test program are set in the area

Using S-Check 29

Selecting the experiment type

named Arguments. Enter only the arguments. Do not enter the name of the

executable.

To specify a preprocessor, other than the default, enter its name (path, if

necessary) in the Preprocessor text field. Standard input files can be list in

the Standard Input text field. List these as you would on a shell command
but without the ‘<‘ metacharacter.

Special Note to AIX 4.1 users: It may be necessary to include the gnu C
preprocessor in the Preprocessor text field in order for S-Check to parse

your code. The preprocessor distributed with AIX provides a different for-

mat then the one used by S-Check. Until we correct this problem, use gcc -

E -I/usr/include, in the Preprocessor text field. You will have to exit from S-

Check and restart it for this change to take effect. Note that the gnu C com-

piler is required.

On our test system (IBM SP2 AIX 4.1) we set the Default CFLAGS text

field to -I/usr/lpp/ppe.poe/include, the Compiler text field to /usr/bin/mpcc,

and the Preprocessor text field to gcc -E -I/usr/include. On AIX 3.2, the

default preprocessor is sufficient and the above changes are not required.

Selecting the experiment type

S-Check can perform basic screening tests to extract a sensitivity analysis of

the test program (see bottom of Figure 4). Specialized tests are also avail-

able. For shared memory architectures, the cost of synchronization barriers

can be evaluated. Communications test will restrict the test space to the

communication library selected in one of the platform setup windows. Scal-

ing is another test, one that determines how well a code segment scales as

the size of the machine is increased.

The chosen experiment type dictates certain S-Check restrictions and

requirements for additional input. For example, when performing barrier

tests, only barriers can be selected as factors. Scaling tests require that the

test program be capable of varying the number of processors. To select the

experiment type, click on the desired test. Only one test can be selected.

30 Using S-Check

Selecting the experiment type

Pressing OK will record this information and pop up the Experiment Con-

trol Window. Cancel will bring down the window with no changes or selec-

tions recorded.

Using S-Check 31

Selecting the experiment type

32 Using S-Check

CHAPTER 4 Instrumenting the Test Program

Factor Editor

Instrumenting the test program involves two functions:

• selecting factors

• defining the response interval

Factor selection involves picking code segments in the program that you

wish to test. Wherever a factor is selected, S-Check inserts code that can be

activated to cause a delay at that location. You can choose factors and the

response interval by launching Factor Editors. To start a Factor Editor, dou-

ble-click on the file you wish to edit in the Experiment Control Window
(Figure 18 in Chapter 5). Starting a Factor Editor brings up a Factor Editor

Window, loaded with the source code, and ready for factor selection. Figure

1 2 shows an example of a Factor Editor.

Some of the discussion on factor selection and defining the response inter-

val applies only to the C language. There is a special section describing the

differences between instrumenting C and FORTRAN programs. The differ-

ences in functionality are due to the fact that C code is parsed and regener-

ated, whereas simple text substitutions are made for instrumenting

Using S-Check 33

Factor Editor

FORTRAN and other languages. The instrumentation discussion will first

be presented for the C language.

factor list area

message area

annotation column

source code display area

j
SCheck: t actor Lditor Wlftciow

^
Utilities

1

1 gratlienfc*c jTop-iz-

1
Entering in Factor selection node

J

,

. ,
.

' V
id = n_get_nyid<>;
np = n_get_nunprocs<>

;

thresh2 = thresh * thresh;

for <i = id; i < IMfiGE_SIZE; i += np> £
for <J = 0; j < IMftGE_SIZE; J+*> £

xderiu =0;
uderiu =0;

for <n=0;n<3; n*+> £

if <<ln < IMflGE_SIZE> 88 <in >= 0>)
for <n = 0 ; n < 3; n»*) £

IBJn = J n
if <<jn < lMflGE_SIZE> 88 Cjn >= 0)) £
X inage£in]
xderiu += gradx£n]En] * x;
Uderiu += graduEnlEn] * x;
I

FIGURE 12 . Factor Editor Window

34 Using S-Check

Selecting Factors

Through the Factor Editor (Figure 12) you select factors and the response

interval. The scrollable message area provides feedback during factor selec-

tion. For example, if you select an item that can not be instrumented, an

appropriate message is displayed. The annotation column indicates if a fac-

tor is selected on a line by marking the corresponding annotation column

line with a white horizontal dash. It also displays the start-stop indicators

when the response interval is set. See discussion on Setting the Response

Interval. The source code display area is where you define factors. Discus-

sion on this topic is expanded in the next section. Selecting Factors. The

factor list area provides a list of selected factors. The factors are displayed

in sorted order depending on their line number within the file. The factor

count displays the total number of factors selected in the file that is being

edited. A count of all factors selected for the experiment is displayed on the

Experiment Control Window. To the right of the factor count is the Select

Response button. The purpose of this button is described in Setting the

Response Interval.

Press OK to dismiss the Factor Editor and record all changes. To dismiss the

window while ignoring modifications, press Cancel.

The size of the scrollable windows {i.e., message area, source code display

area, and the factor list area) can be increased/decreased by moving the

panes at the lower right hand side of each scrollable window.

Selecting Factors

Factors are test points in the code. You are responsible for selecting factors.

Factors can be selected manually (by clicking at a code location) or semi-

automatically (by using S-Check’s factor selection utility). The notion of a

factor comes from the branch of statistics called design of experiments

(DEX). In DEX, factors correspond to parameters that are varied in the

experiment. To select a factor, click on the location where you want to

define a test point. If this location is a valid factor that can be instrumented,

the location of the instrumentation is indicated. The location is tagged with

reverse video (Figure 12). The instrumentation will be inserted between the

left most character and the right most character of the reverse video. Some

Using S-Check 35

Selecting Factors

exceptions to this rule exist and are pointed out below. Click on the location

again to remove the factor. The factor will no longer be highlighted in

reverse video. Once a factor has been selected the factor count is updated

for the current file that is being edited. The global factor count for the exper-

iment is maintained on the Experiment Control Window.

uhi le(exchanges == TRUE) I 1

Z i: 1

K^changes = FRL5E; 1 1

linit -= 1; 1

i = left_pt; 1' 1

uhiled <= Unit)
1

1

ll

ifdistti] > list[i + l])£ I
|i E

exchanges = TRUE; i

2 1' 1

i += 1; 1 \

2 fe i

2 i

2
1 Vi

FIGURE 13. Factor Selection, Default Interpretation.

Figure 1 3 shows a cut out of a Factor Editor. The first selection instruments

the body of the while() loop. That is, the perturbation code is inserted as the

first statement in the loop. The second selection instruments the code after

the call to swap() and before the statement exchanges = TRUE.

Defining a code segment to be a factor will cause instrumentation code to be

inserted at that location. The code instrumentation process occurs later in

the SPS process. In most cases the instrumentation code is inserted between

the left most and right most character displayed in reverse video. In a few

situations this rule does not apply. The user must exercise caution when

selecting factors to insure that the intended location for instrumentation is

the desired location. The example above shows the default interpretation.

36 Using S-Check

Selecting Factors

The example in Figure 14 illustrates the special cases that apply to com-

pound statements.

<F1> <D1> while <F2> (index > limit) <F3> { <F4>

<D3> <F5> <D5> stmtl = settingl

;

stmt2 = setting2;

<D4>

}

<D2>

FIGURE 14. Factor Selection, Special Cases for Compound Statements.

The symbols <F1> through <F5> indicate the test locations you selected. In

S-Check these locations will be highlighted in reverse video. The symbols

<D1> through <D5> indicate the locations where the delay treatment is

inserted into the code. Factors <F1> and <F5> adhere to the default inter-

pretation as the delay is inserted where the factor was chosen. The interpre-

tation for factor <F2> is to instrument the code following the while() loop

(<D2>). Clicking at location <F3> instruments the body of the loop, that is,

the first statement in the loop. It is instrumented exactly like <F5>. If the

location F4 is selected, then the last statement in the while loop is instru-

mented (<D4>). The impact of <F4> and <F3/F5> will differ if there is

branching back to the beginning of the loop. Some of these special case

options are implemented for future S-Check features. If you want to instru-

ment the body of the loop, it is best to use the default interpretation as in

<F5>.

If you select a location that S-Check cannot instrument, you are notified of

this in the message area. Items that cannot be instrumented include lines

that are encased in preprocessor commands which are not defined and there-

fore will not be part of the executable code. Locations that produce invalid

code (e.g., at the end of a function) cannot be instrumented.

Using S-Check 37

Factor Profile and Automatic Factor Selection

Instrumenting lines with preprocessor commands

Lines containing C preprocessor macro definitions can be expanded to show

the real value of the macro definition. This aids in determining the actual

location of the delay for statements containing these macros. Otherwise, the

Factor Editor may misrepresent the location of the delay because it high-

lights the (displayed un-expanded) code according to the expanded or pre-

processed code. S-Check provides a feature to toggle between the two

states.

To expand a line that contains a macro, simply click on the line. All the

instrumentation rules as described above apply as usual. To revert to the

pre-expanded state, click on EXP in the annotation column.

Factor Profile and Automatic Factor Selection

S-Check provides two utilities to aid the process of factor selection. The

Factor Profile Window (Figure 15) indicates the number of programming

constructs or library (function) calls in the program or in a particular file.

Based on this information the user can select factors automatically. An
example selection command could be select all/or loops in file compute. C.

To access this facility (at the program level) select Factor Profile button

under the Utilities menu on the Experiment Control Window. The factor

profile and automatic factor selection facility can also be accessed at the file

level in each instance of a Factor Editor.

To obtain a Factor Profile, click on the desired construct button(s) and a list-

ing showing the number of the selected construct(s) appears for each file

defined in the work set. For example, to see how many for loops exist in the

program, click on the for loops toggle button. This action will then indicate

the number of for loops for each file in the program. A Factor Profile such as

this can be obtained for; for, while, and do loops, function declarations, func-

tion calls, predefined function calls such as barriers() or calls to a communi-

cations library routine. Special functions calls can be added to S-Check

default list (prior to installation) or declared explicitly in the Function Calls

Text Field.

38 Using S-Check

Factor Profile and Automatic Factor Selection

FIGURE 15. Factor Profile and Automatic Factor Selection

The information presented in a Factor Profile can aid in automatic factor

selection. To instrument a group of factors in a file for a particular constmct

or constructs select the construct(s) and the file. Click on the Apply button to

execute the request. For example, to instrument all for loops in the file gradi-

Using S-Check 39

Factor Management

ent.c: (i) click in the for loops toggle button (ii) click on the file gradient.c

(iii) click on the Apply button. Upon completion of the command, the fac-

tors just selected can be viewed with the appropriate Factor Editor instance.

All factor counts will be updated automatically. See the Factor Management

Window in the next section for group removal of factors.

Factor Management

The Factor Management Window (Figure 1 6) allows you to remove all fac-

tors in the experiment or all factors in an individual file. You access the fea-

ture by using the Utilities menu on the Experiment Control Window and

selecting the Factor Management button. Click on “All files” and hit the

Apply button to delete all factors in the experiment. To remove all factors in

a particular file, click on that file and select the Apply button to carry out the

instmction. To exit the window, select the OK button.

Setting The Response Interval

The second item that needs to be set for instrumenting the code is the

response interval. The response interval defines the start and stop locations

for capturing the response time. The response time equals the time recorded

at the stop location minus the time recorded at the start location. The

response time is used in the calculation of effects. The start/stop locations

can be set in any file and the response interval can span files. That is, the

start/stop locations need not reside in the same file. The response interval

should be set so that it encompasses all factors. Otherwise, the effect for the

factors not in the domain of the response interval is not accounted for. It is

important that the response interval be set in a sequential part of the code or

that it is guaranteed to be set by only one process. Results are otherwise

undefined.

40 Using S-Check

Setting The Response Interval

FIGURE 16 . Removing Factors

To select the response interval click on the Select Response button (Factor

Editor). This will turn off the factor selection mode and activate the select

response mode. While in the select response mode, the cursor is modified to

a down arrow indicator or to an up arrow indicator. Clicking in the source

code display area while the down arrow cursor is active will cause a “B” to

be placed in the annotation column corresponding to the selected location.

Likewise, clicking in the source code display area while the up arrow cursor

is active will cause an “E” to be placed in the annotation column corre-

sponding to the selected location. The “B” indicates the start (begin) loca-

tion and the “E” marks the stop (end) location.

The first time the Select Response button is clicked, the down arrow indica-

tor is active. You can change the selection mode to an up arrow (for defining

Using S-Check 41

Setting The Response Interval

the stop location) by selecting a start location or by clicking on the Select

Response button. The latter option allows you to avoid setting or changing

the start location. The former option will define the start location and auto-

matically put the editor into the define stop location mode. Clicking twice

on the Select Response button will return you to the factor selection mode
(bypassing the stop location mode). The factor selection mode is automati-

cally entered after the stop location is defined. Unlike factor selection,

defining the response interval is line oriented. The resolution of the “B” and

“E” (in this implementation) are somewhat coarse, so make sure the start

and stop locations are clearly defined.

CHECK

I
I
printfC unsorted list of nunbersSn");

I for(i=0;i<SIZE;i++)
if printfC XfidXcM istt i 1 , (i^l0==9 II i

1 1
ttendif

I
quickO;

I# if CHECK

I printfCSnSDRTED LISTSn");
I for(i=0; i<SIZE; i++)

I
printfC Z6d/:oMist[i],(i/:iO==9 II i

I Hendif

FIGURE 17. Defining the Response Interval.

==SIZE-1) ? 'Sn' I:

=SIZE-1) ? 'Sn^

In Figure 17, the function quick() is defined to be the response interval.

S-Check does not check for multiple execution of start/stop locations. It

does however check if the stop location is executed before the start location.

Only one response interval can be set. Setting the start/stop locations when

the response interval is already defined will overwrite any previous settings.

The new start/stop locations will define the response interval.

Setting the response interval will automatically reset the delay value to an

undefined state. It also changes the job status to Empty. A built experiment

will have to be reconstructed.

42 Using S-Check

Instrumenting Programs Other Than C

Instrumenting Programs Other Than C

The discussion above focused on instrumenting the test program for the C
language. The instrumentation process for C differs from that of other lan-

guages supported by S-Check. This is due to the fact that C code is parsed

and regenerated whereas the instrumentation for other languages (FOR-

TRAN 90) is performed by text substitution. The basic instrumentation pro-

cess still holds in both cases. However, some of the convenience functions

provided for C are not available for other languages. These features include

statement level instrumentation, verification of correct instrumentation

placement, factor profile, and automatic factor selection.

Factor selection proceeds much the same way as described in the discussion

above. Start a Factor Editor and click on locations where you want the

instrumentation code. Instrumentation is line oriented. The delay code is

placed on the next line. Make sure that the instrumentation code is placed at

a location that still will produce correct (compilable) code.

Instrumenting FORTRAN Programs

Instrumentation of a FORTRAN program proceeds as described in the pre-

vious sections. FORTRAN editing is line oriented. S-Check Version 3.0

code instrumentation for FORTRAN is written in FORTRAN 90. Therefore

you must use a FORTRAN 90 compiler to use the built-in FORTRAN
instrumentation. Your code, however, can be written in either FORTRAN
77 or FORTRAN 90. If you do not have a FORTRAN 90 compiler, you can

use the Generic Language Type setting on the Configuration Window and

supply your own instrumentation code that works with your particular com-

piler.

Using S-Check 43

Instrumenting Programs Other Than C

44 Using S-Check

CHAPTER 5 Experiment Control

Experiment Control Window

The Experiment Control Window (Figure 18) involves:

• Experiment maintenance and convenience functions (File menubar)

• Launching factor editors

• Setting and showing the delay value {Utilities menubar)

• Selecting a DEX plan

• Selecting experiment replication

• Displaying progress and error messages from S-Check

• Displaying experiment setup information

• Running an experiment

• Displaying run status information

• Viewing internal results

• Obtaining an external profile

• Saving Results

• Launching result viewers {Display menubar)

Using S-Check 45

Experiment Control Window

The first seven topics are described in this section. The next two are

explained in the section to follow. Running an Experiment. Viewing internal

results and obtaining an external profile are explained in separate sections.

The last two items are covered in Saving Results and Viewing Results.

Experiment Maintenance and Convenience Functions

Experiment maintenance and convenience functions are accessed under the

File menubar selection. Open gives you access to the Experiment List Win-

dow. For experiment configuration modifications select the Configure but-

ton to bring up the Configuration Window. To save the current experiment,

select Save. This action brings up a box with toggle buttons named Save

Experiment and Save Results. To save all of the settings of an experiment,

select Save Experiment and click-on Save. The saved file contains every-

thing necessary to retrieve an experiment in its present state. These items

include everything defined on the Configuration Window, Experiment Con-

trol Window and Factor Editors. It also saves the state of the interface. A
saved experiment can be opened from the Experiment List Window. Results

of an experiment can be saved by selecting the Save Results toggle button

and pressing on Save. This action pops up the Save Results Window. See the

section on Saving Results for details. To save an experiment with a new

name, select Save As. To close an experiment, select Close. Quit SCheck

will exit the program.

Launching Factor Editors

The work set is the list of files defining the target program. This list is con-

structed in the Configuration Window. Double-click on the file you wish to

edit. This action launches a factor editor, loaded with source code, and

ready for factor selection. There is no limit on the number of factor editors

you can launch. See Instrumenting the Test Program for details on using a

factor editor.

S-Check Messages

S-Check uses the message area to inform you about its progress in instru-

menting the target program. Typical status information includes:

• files being parsed

46 Using S-Check

Experiment Control Window

• compilation progress

• stages in determining the delay value

• state and value of the delay

• traces of response time and treatments for trials

• information for effect calculations

• warnings and errors

TABLE 2. Experiment Control Warnings and Error Messages

Message Reason Fix/Consequent

delay value is no

longer set

1. factor set was changed.

2. response interval was

changed.

1 . a built experiment has to be

reconstructed because the pre-

vious delay value may not be

appropriate for the new experi-

ment settings.

unable to find suit-

able delay value in

“jc” tries

1. factors not significant

enough, S-Check gave up

looking for large delay

value.

2. response times not lin-

ear with respect to delay

value due to unusual pro-

gram or varying system

loads.

1 . re-evaluate factor choices or

set the delay manually.

2. look for unusual behavior in

program or run when system

load is stable.

resolution of delay

value may be too

coarse

1. S-Check’s nominal

delay value is too coarse

for factor set.

1. response times may be

unnecessarily long due the

coarseness of S-Check’s delay

value. Future S-Check ver-

sions will allow for finer grain

delay values.

runtime with no

delay set is > runtime

with delay

1 . response interval does

not encompass factors

2. selected factors are not

significant enough to

cause response time to

increase significantly

3. program is very unusual

1 . make sure the response inter-

val encompasses all selected

factors

2. re-evaluate factor set

3. check for severe communi-

cation contention or other

anomalies which make the pro-

gram run faster with delays.

See [1] for an example.

Using S-Check 47

Experiment Control Window

TABLE 2. Experiment Control Warnings and Error Messages

Message Reason Fix/Consequent

variance computed

with “x” degrees of

freedom. You need

at least 10 for a

meaningful estimate.

1
.
plan does not provide

enough information to

obtain a meaningful esti-

mate of the standard error

1 . disregard and use normal

probability plots to select sig-

nificant factors.

2. choose new plan or run with

replication.

S-Check can’t han-

dle saved suspended

jobs. Job Status is set

to built.

1 . experiment was saved

while job was suspended.

1 . Current S-Check implemen-

tation can’t handle suspended

jobs. Job must be re-started.

Creation of instru-

mented source failed.

1 . The program CInstGen

failed.

1 . Check the standard error

message log and look for a

work around.

2. This is a bug in S-Check and

should be reported.

linking failed 1 . unable to create execut-

able

1 . verify program code and

linkage flags.

Table 2 gives a list of potential warning and error messages along with sug-

gestions on how to resolve problems.

Setting the amount of delay

The delay value is either set by you manually or by S-Check automatically.

By selecting Build (see Running an Experiment), S-Check will automati-

cally determine an appropriate delay size for the experiment. It is part of the

build process. Alternatively, you can set the delay value manually.

To set the delay value manually, enter a positive integer in the Delay text

field on the Experiment Control Window. A message confirming the delay

value setting is printed in the message area. To get back to the default state

of letting S-Check automatically determine the delay value, choose Unset.

The duration of the artificial delay is an important aspect. Ideally, the delay

should be long enough so that it can be distinguished from experiment noise

and short enough so as not to produce unnecessarily long program execu-

48 Using S-Check

Experiment Control Window

tion times. When setting the delay manually, it is up to you to select an

appropriate value. When the delay is determined automatically, a few trial

runs are performed until a satisfactory setting is found.

The delay itself is a function that performs artificial instructions. The delay

value controls how many times a loop iterates performing the artificial

instructions. With the current implementation of the delay function, it is rec-

ommended that S-Check tests be performed without compiler optimization.

A future improvement to S-Check will incorporate a variety of artificial per-

turbation options.

Selecting a DEX plan:

A design of experiment plan is a complete description of a minimum set of

perturbation patterns needed to carry out a meaningful program investiga-

tion. A variety of schemes (briefly described below) are available in S-

Check. It is important to note that there exists a direct correlation between

the minimum number of runs in an experiment, the quantity of information

provided by the investigation and the selected plan type. The trade off buys

information with number of runs.

The user has six options for defining the experimental plan.

• Automatic

• Full factorial

• Half factorial

• Quarter Factorial

• Resolution IV

• Resolution III

The total number of factors under study is an important criterion in the

choice of an experimental plan. For efficiency purposes, it is essential to

maintain a balance between the quantity of information desired and the cost

of the corresponding experiment. Any knowledge on interactions or the lack

thereof should be put to use—there is no point looking for third-order inter-

actions when they are known to be absent. Table 3 is intended to help you

meet these requirements.

Using S-Check 49

Experiment Control Window

TABLE 3. Plan Selection

Plan Selection

Up to S- Check Up to the user

Number of factors <200 small(<12) large(12<f<200)

Full Resolution IV

Option Automatic Half Resolution HI

Quarter

With Automatic, S-Check decides which plan type to use in investigating

the program. Table 4 summarizes how choices are made.

TABLE 4. Automatic Selection

Number of Factors Plan Type

up to 4 Full Factorial

5 or 6 Half Factorial

7 or 8 Quarter Factorial

9 to 31 Resolution IV

31 to 199 Resolution HI

Full factorial designs consider every combination of factor levels, that is,

they support inferences about all factor interactions. Be aware that the num-

ber of measurements (program runs) rapidly becomes prohibitive as the

number of factors increases. A full factorial design is usually not appropri-

ate for large numbers of factors. Note that high-order interactions are quite

often of negligible magnimde when compared to main effects and low-order

interactions; therefore when the number of factors increases, the desired

information can be obtained by performing only a fraction of a full factorial

experiment. Full factorial designs can currently be requested for up to 12

factors.

A halffactorial design requires only half the mns of a complete full facto-

rial. A minimum of 3 factors (theoretical limit) is necessary to request this

type of plan. Such a design in 3 factors is of resolution III (explanation fol-

50 Using S-Check

Experiment Control Window

lows). To get an estimate of the standard deviation (called standard error)

under this particular configuration you will need replicates. Other half fac-

torial designs provide an estimate of the standard error without replication.

Half factorial designs can be requested up to 9 factors (implementation

limit).

A quarterfactorial design requires only one-fourth the runs of full factorial

(i.e., half the runs needed in a half-factorial design). A minimum of 5 fac-

tors (theoretical limit) is necessary to request such a design. This 5-factor

configuration is of resolution III and as noted previously replicates are

needed to get an estimate of the standard error. Other quarter factorial

designs provide an estimate of the standard error without replication. This

type of plan can be requested up to 10 factors (implementation limit).

The resolution of a plan gives an immediate indication of the information

capacity of the design. Resolution III plans confound (mix) results of first

and second order effects, while resolution IV plans do not confuse first and

second order effects, but instead confound first and third order effects. Ide-

ally one should only use plans of resolution IV and up. Both resolution III

and resolution IV plans are, however, appropriate for preliminary screening

of a large number of factors, since in these cases many factors are insignifi-

cant.

Resolution IV designs may be requested for any number of factors between

2 and 199. They provide information on main (first order) effects only. In

contrast to resolution III designs, no replication is needed to get an estimate

of the standard error.

Investigations built on resolution III plans require half the runs of those built

on resolution IV plans. Again, information is provided only on main effects

and this time replications are needed to get an estimate of the standard error.

Resolution III plans may be requested for any number of factors between 2

and 199.

Using S-Check 51

Experiment Control Window

Setting Replication

Replication indicates the number of times the experiment is performed. The

default value is 1 (minimum), which means the experiment is run once. To

duplicate the experiment, set replication to 2. The range of the replication

value is currently 1 to 99.

experiment control

menubar

files to edit

experiment information

area

DEX plans

replication area

message area

«< Fi les :

; benchnark .c

benchnark i o . c
bnkg loba Is.c
connected_conponent .c

; error_ops .c
:extract_cues.c
gn-c

l^n Control

mm Plan®

^Besolution fV

vftesolution 111,

Facfecw's

j^Jbjns Hetfuired

1l0ver*ead Est.

Status

1ir»0 Estitnabe ^

F inished

12B

Finished

ftepllcatioo(s>
I

jSe las Value

Itessages

response tinet 125] is; 29.
response tinet 126] is; 38,
response tinet 127] is; 47.
response tinet 128] is; 32.

49 01100111100110011001100001
25 01111001100001111000011001
35 11111111111111111111111111
65 lOOOOllllOOOOllllOOOOllllC

Ai

FIGURE 18. Experiment Control Window

Replication may be necessary if anticipated variability or noise level of the

experiment is high. Shared-memory systems generally have lower experi-

ment noise than distributed-memory machines, with “PVM” style experi-

52 Using S-Check

Running an Experiment

ments being the worst. Replication may also be used to obtain a standard

error for an experiment when a single run of the DEX plan cannot provide

one. As mentioned, under some circumstances full factorial, half factorial,

and quarter factorial plans do not provide a standard error. A single run of a

resolution III experiment never provides a standard error (Normal probabil-

ity plots allow some choices to be made without knowing the standard

error). Refer to Appendix B for details on the availability and use of the

standard error for an experiment.

To increase/decrease the number of replications, press the up/down arrow

buttons to the left of the replication text field. For rapid movement hold the

desired arrow button down. To reset replication to its default value click

once in the replication text field.

Experiment Information Area

This area describes experiment parameters and attributes of the current

experiment. Factors is the total number of factors selected for the experi-

ment. Runs Required is the total number of times the test program is exe-

cuted to complete the experiment. This value is affected by the number of

factors, DEX plan, and the replication value. Overhead Est. (Overhead Esti-

mate) gives an estimate (as a percentage) of how much longer the test pro-

gram will run on average. Status indicates the state of the experiment: This

topic is expanded in the next section. Trial indicates the current trial number

S-Check is running (e.g., 17 of 32—the 17th run in a plan that requires 32

runs). Time Estimate shows how long the experiment will take to complete,

based on preliminary measurements performed while determining the delay

value and the number of runs in the experiment. This estimated value is

updated during the execution of the experiment. If you set the delay value

manually, then the Time Estimate is not given until after the first trial run.

Running an Experiment

There is a two step procedure for running an experiment. The first is an

intermediate step called build (select Build on the Experiment Control Win-

dow). Building the experiment compiles the work set files and constructs an

Using S-Check 53

Running an Experiment

executable test program. The built program is instrumented with code that

can activate/deactivate perturbation code at each factor location. Building

the experiment also determines the size of the delay value (if not set manu-

ally).

At this point the experiment is ready for execution. You can select (if you

have not done so already) or change the DEX plan and number of replica-

tions without rebuilding the experiment. Changing the DEX plan or replica-

tion value can alter the number of runs required. If the factor set is

modified, the experiment must be rebuilt.

To run an experiment, press Start on the Experiment Control Window. Start-

ing an experiment will randomly execute each program version defined by

the experiment parameters. The plan row and response time for a given trial

is displayed in the message area. The series of 1 ’s and O’s indicate whether

or not a delay was executed for a given factor. If set to 1 , the delay was exe-

cuted. The code is not disturbed if set to 0. The factors are mapped to the

plan row (left to right) and can be identified by correlating them with the id

on the Effects List Window.

An experiment is suspended and restarted by selecting the Suspend and

Restart buttons respectively. Suspending an experiment terminates the cur-

rent running instance of the program. Data from completed trials are saved.

Restarting an experiment first runs the trial that was terminated during the

suspend operation and then continues the experiment. Response informa-

tion is appended to data previously captured. Stop terminates the experi-

ment with no saving of state. The job status is returned to Built, the

experiment can be restarted. Start/Stop and Suspend/Restart occupy the

same button region, therefore only one of the option pair is available at any

given time.

Status indicates the current state of the experiment. An experiment can have

the following states:

Empty The experiment has not been built.

Building The test program is being compiled with instrumentation

code.

54 Using S-Check

Viewing internal Results

Determining Delay Sample trial mns are executed for the purpose of finding a

suitable delay value.

Built The experiment was successfully built and the delay value

is defined.

Running The experiment is currently mnning.

Queued The experiment is queued waiting for start-up. This feature

is currently unavailable.

Suspended The experiment is suspended. State information of

previously mn program instances are saved.

Terminated The experiment has been Terminated. No experiment state

information is saved.

Calculate Effects All trials ran successfully. Results are being calculated.

Finished The experiment has completed. Results of the experiment

can be examined.

Viewing Internal Results

S-Check displays intermediate (raw) results of an experiment on the DEX
Information Window (Figure 19). You can access this window under the

Utilities menu on the Experiment Control Window. It displays the raw inter-

nal information S-Check uses to calculate effects. This information is not to

be used directly as a performance measure, but rather to verify the sound-

ness of the experiment and/or to conduct further analysis of the data.

There are a number of options available to display the data. DEX Plan dis-

plays the pattern of delays used in the experiment. A row in the plan corre-

sponds to a trial mn. A column corresponds to a factor and is linked to an

index assigned during factor selection. The DEX Plan can be displayed

before or after the experiment is mn. The response time for each mn can

also be displayed by selecting the Response times option. All of this data

can be viewed in either Run or Plan order. The plan can be packed {i.e., no

spaces) with the Pack plan option.

Using S-Check 55

Viewing Internal Results

FIGURE 19. DEX Information Window

The data can be saved to a file in ASCII format and subsequently processed

with statistical packages or programs outside of S-Check. One such situa-

tion may occur when a single Resolution III experiment is conducted with-

out replication. Afterwards, it is deemed that a second run is needed to

obtain a standard error and to verify results of the first run. Two options

exist, the first is to rerun the experiment, setting the replication to 2. We
would get the information desired, but at a higher cost since we had to

ignore results of the first experiment and run it again with replication set to

2. The other alternative is to save the internal results of the first run and then

make another run of the experiment (replication =1). We could then save

the internal data of this (the second) run and combine it with the internal

data of the first run and calculate performance information from this com-

bined file. However, these calculations would have to be performed outside

56 Using S-Check

Obtaining an External Profile

of S-Check with a statistical package or program. Such programs can be

provided upon request.

Obtaining an External Profile

S-Check provides the capability to obtain a conventional external profile

{e.g., gprof or pixie) of your test program. The external (or UNIX) profile

can help you select candidate test points and can be used to compare and

contrast results from the profiler and S-Check. To obtain an external profile,

select the External Profile button under the Utilities menu on the Experi-

ment Control Window. Figure 20 shows the External Profile Window.

Select the profiler that you wish to execute. A default setting of parameters

is given for Prof, Gprof, and Pixie. You can keep the default settings or set

them for your particular system or preferences. The Generic selection pro-

vides the option to run other profilers not listed.

Make sure the appropriate library path is set (if necessary) for a given pro-

filer. Pixie, for example, may require the LD_LIBRARY_PATH to be set to

the current directory so that it can find libc.SO.1 .pixie. Also, by default prof

will look for the count file exe_name.Counts. However, if your program ere-

ates multiple processes, pixie generates multiples count files with proeess id

extensions. In this case the View command will need to be prof exe_name -

pixie exe_name.Counts.*. Make sure that there aren’t any old .Counts.* files

around. These files reside in the “experiment_directory/.scheck/

experiment_name” directory.

The Executable Name text field holds the name of the executable. The

default, “exe_name” is just a place holder for the executable. It can be any

name. The next two fields hold the compiler and linker flags. The Instr. field

(for instrumentation) is provided if an instrumentation program is needed to

patch code into the executable (e.g., in pixie). The Run text field contains

the command to execute the program and View contains the display com-

mand. Once all profile instructions are set, click-on Apply to execute the

program and display results. Upon successful completion, results of the pro-

file will appear in the Profile Data Window.

Using S-Check 57

Obtaining an External Profile

FIGURE 20. External Profiler

58 Using S-Check

CHAPTER 6 Viewing Performance Data

There are two windows to view S-Check’s performance data. You can either

obtain a rank-ordered list of the effects by launching a List Effects Window
or observe the effects in various plot views of the Plot Effects Window. By
default, data from the current experiment are displayed when either of these

two windows are launched. To view results of other experiments you can

bring up the Multiple Display Window. These options are found under the

Results menu on the Experiment Control Window.

List Effects

The List Effects Window (Figure 21) displays results of the experiment. At

the top of the results area an experiment summary is given. The summary

includes experiment settings and the standard error. After this the effects for

each factor and factor interaction are displayed. The list follows this format:

index effect order term [line #]file function text

Using S-Check 59

List Effects

where:

index arbitrary identification assigned to a factor or factor interaction

effect expresses importance of corresponding factor or factor

interaction

order describes the degree of interaction. An order of 1 indicates a

main (standalone) effect. An order of 2 indicates a 2-factor

interaction and so on.

term describes the factor or factor interaction via an index.

Index and term are the same for main effects. For effects

with an order of two or more, the term is represented by

combining the indexes of constituent factors. The indexes are

delineated by periods (.).

[line #]file indicates the file and line number for the factor. If the factor

is an interaction then that is indicated instead.

function is the function in which the factor resides.

text displays the source code corresponding to the factor.

The list control area gives the user the option to set preferences for display-

ing the effects. You can control a standard error filter, the level of the order

to be displayed, and the sorting of effects by index or by value.

Setting the standard error filter determines how significant an effect should

be to be displayed. For example, if the standard error is 0.25 and the stan-

dard error filter is set to 5, then only effects that are greater than 5 * 0.25 =

1 .25 are displayed. Press Apply (or hit <retum>) to activate the new setting.

The default value for the standard error filter is one standard error (if acti-

vated).

The level of interaction, or order, of effects to be displayed is controlled by

selecting the desired order in the order level area. Selecting the order will

display effects of that order. More than one order may be selected. Once all

60 Using S-Check

your selections are final, press Apply to see the changes. The default dis-

plays only main effects, but in parallel processing, second order effects can-

not be dismissed.

Effects are sorted either by their value or by their index. Select the desired

ordering and press the Apply button to activate the changes. Sort-by-value is

the default.

standard error filter

order level area

sorting preference

results area

FIGURE 21 . List Effects Window

If you are changing more than one setting in the list control area, you can

wait until all of your selections are made before pressing Apply.

Using S-Check 61

Plot Effects

List information can be saved in a postscript file. Select the Save Postscript

button. This action brings up a dialog containing a list of files in the current

working directory and a text entry field. Enter the name of file you wish to

save the effects list in and click the Save button. The implementation saves

the currently selected display. All postscript files are saved in the experi-

ment directory, regardless of the experiment.

Plot Ejfects

Four plots are available to visualize S-Check analysis results (Figure 22):

• absolute effects plot

• mean plot

• normal probability plot

• half normal probability plot

By default, all four plots appear in the display area when the Plot Effects

Window is popped up. Each plot can be requested individually by clicking

on the plot or by using one of the available push buttons. Clicking again in

the display area takes you back to the previous display.

The plot control area gives you the option to set preferences for displaying

the effeets. You can control a standard error filter, the level of the order to be

displayed, and the sorting of effects by index or by value. Unless otherwise

specified, these options apply only to the absolute value of effects and half

effects plots.

Next and Previous allow you to browse through the results whenever a sin-

gle screen cannot handle the complete set of results at once. A sereen can

plot up to 32 data points.

The error filter applies only to the absolute value effects plot. It can be used

to ignore factors that are not considered to be significant. To use this filter,

select the ERROR FILTER toggle button. If a standard error exists, this will

activate the text field immediately below the toggle button. Enter the stan-

62 Using S-Check

Plot Effects

dard error factor and press <retum>. This action will highlight effects that

surpass the threshold set by the filter. An effect must be greater than the

standard error multiplied by the standard error filter to be highlighted (dis-

played in another color). In addition, a highlighted horizontal line is drawn

at the threshold limit. The default value for the standard error is one (if acti-

vated).

plot selection area

screen control buttons

.

standard error filter

plot display area

order level area

sorting preference

flptStfer,' Wlruloif

S-Cheok Plots

Expcrlnent: ;exanple.l

FIGURE 22. Plot Effects Window

The level of interaction, or order, of effects to be displayed is controlled by

selecting the desired order in the order level area. More than one order may

be selected. Once all your selections are final, press Apply to see the

changes. The default displays only main effects.

Using S-Check 63

Plot Effects

Interaction availability is dependent on the experiment type. Order level

toggle buttons are grayed out when interactions are not available.

Effects are sorted either by value or by index. Select the desired ordering

and press the Apply button to activate the changes. In contrast to the List

Panel, sort-by-index is the default.

If you are changing more than one setting in the plot control area, you can

wait until all of your selections are made before pressing Apply. A descrip-

tion of each plot follows:

Absolute Effects Plot. The absolute effects plot represents the absolute val-

ues of effects for the different factors under study and their interactions

(when available). The taller the line, the larger the absolute value of the

effect (y axis). Numbers on the x axis are arbitrary identifications assigned

to factors. Use the rank-ordered list (List Effects Window) to link indexes

with their corresponding term.

Mean Plot. The effect of a factor is given by the difference in the means for

all high and all low settings of the factor. The mean plot is generated by

drawing a line between the mean at the low and high setting of a factor for

every factor and factor interaction (when available). The longer the line, the

larger the effect. As with the absolute effects plot, factors are identified by

an arbitrary index (x axis).

Normal Probability Plot. In a normal probability plot, effects (y axis) are

arranged in ascending order of their value (i.e., from smallest to largest) and

plotted against the theoretical standard normal percentiles (x axis). Theoret-

ical standard normal percentiles are the cumulative values one would expect

if the effects arose from a normal distribution centered about zero with a

standard deviation of one. If the effects in an experiment are generated

purely by noise, then the points would tend to fall on a line passing through

the origin. Outliers from this line indicate significant effects and so high-

light potential performance bottlenecks. Data points (i.e., effects) are

arranged in ascending order of their value.

Half Normal Probability Plot The half normal probability plot is similar to

the normal probability plot, except that effect estimates are arranged by

64 Using S-Check

Saving Results

their absolute values (y axis) and plotted against the theoretical standard

half-normal percentile (x axis).

The plots can be saved in a postscript file. Select the Save Postscript button.

This action brings up a dialog containing a list of files in the current work-

ing directory and a text entry field. Enter the name of file you wish to save

the plots in and click the Save button. The current implementation saves

all four plots by default, there is no feature available yet to save individual

plots. In addition to the plots a list correlating the factors indexes to their

corresponding terms is provided. All postscript files are saved in the experi-

ment directory, regardless of the experiment.

Saving Results

Results from the current experiment can be saved in a file by using the Save

Results Window. The Save Results Window is accessed by selecting the

Save Results button under the Results menubar. As mentioned earlier, it can

also be accessed by selecting the Save Results toggle button from Save

under the File menu. The Save Results Window can only be accessed when

valid experimental results exist.

At the top of the Save Results Window are listed previously saved result

files for the experiment. The text field (at the bottom of the window) pro-

vides an area to enter the name of the results file. Saved result files can be

retrieved and viewed via List and Plot Windows through the Multiple Dis-

play Window.

Viewing Multiple Displays

The Multiple Displays Window (Figure 23) allows the user to view and

compare results from previously saved experiments without having to load

each experiment separately. List and Plot panels can be launched for any

results file listed in the results list. This list displays all the result files saved

for all the experiments under the current experiment directory. Results can

Using S-Check 65

Viewing Multiple Displays

be saved by aceessing the Save menu selection or the Save Results menu
selection on the Experiment Control Window. If you want to display a

results file, click in the corresponding toggle area and press List or Plot to

obtain a display of the data. More than one results file may be selected at a

given time. To see multiple results together, you must remember to move
the displays around (they are stacked up initially) if your window manager

automatically places windows.

FIGURE 23. Multiple Displays Window

66 Using S-Check

CHAPTER 7 Warnings and Bugs

Warnings

GCC Problems. Some later versions of GCC such as 2.7.2 have header

files containing a lot of non-ANSI C keywords such as const ,

CONSTANTVALUE, attributes (), etc. which cause S-Check’s C
language parser to fail. Most of these non-ANSI portions of the GNU
header files can be shut-off by undefining the preprocessor symbol

GNUC . This is done by adding the option -U GNUC to the “Pre-

procesor” field of the Configuration Window. Note, as of this writing some

header files distributed with GCC 2.7.2 did not utilize the GNUC
switch for the non-ANSI portions, so you must undefine them on an individ-

ual basis. See the note below “Use of non-ANSI types in the C language”

for more details.

Irix 6.2 Problems. Under Irix 6.2, the MIPS and MIPSpro C compilers

have header files containing the non-ANSI C type “long long,” which under

some conditions causes the S-Check C language parser to fail. For more

details see the note below “Use of non-ANSI types in the C language.”

Using S-Check 67

Warnings

Use of non-ANSI types in the C language. S-Check’s C parser doesn’t

handle some commonly used non-ANSI types correctly such as “long

long”. Often it does not complain and the types are regenerated by the

source code generator. However, under some infrequently occurring condi-

tions this causes a corruption of the parse tree, and subsequent corruption of

the instrumented code (the code will be missing some symbols) which

causes the build to fail. In some cases, a work around maybe available. For

example, in the “long long” case, use “long” if possible (i.e., does the code

really need 64-bit integers).

NULL (;) statements in C are handled incorrectly. In some cases, the

presence of a NULL (;) statement may cause incorrect behavior of the factor

editor. Work around: remove the NULL statements.

C preprocessor anomaly. Version 3.0 of S-Check takes advantage of the

target machine's C processor by using the '-E' option to cc(l). Therefore, S-

Check only parses the preprocessor output, not the original code. This can

cause the following problem, consider:

foo.h:

#ifndef CORRECT
you forgot to define CORRECT
#endif

foo.c:

#define CORRECT 1

#include <foo.h>

main(){}

Since S-Check never parses the macro CORRECT, the attempt to build an

instrumented executable will fail. These problems will be corrected when a

C preprocessor is integrated into S-Check. A work around is to add the

#define to the special C-flags (i.e., -DCORRECT) for the file(s) in question

on the Configuration Window.

Source code modifications and instrumentation. Modifying the source

code will invalidate all instrumentation (i.e., selected factors and/or the

response interval) in the modified code. The user is notified of this upon

recalling an affected experiment.

68 Using S-Check

Bugs

Cannot allocate colormap entry for “color”. The server can’t allocate the

colormap entry for “color”. Too many X-clients are currently running on the

system. Exit one or more of these clients if you want to display the default

S-Check colors.

Bugs

Running experiments simultaneously. Results from running two or more

experiments simultaneously are unpredictable. This feature has not been

thoroughly tested and should be avoided. In addition, running experiments

simultaneously where the test program uses shared files (e.g., on SGI

machines, shared arena) may cause problems.

Instrumenting switch statements. As mentioned in Selecting Factors,

caution should be exercised when defining factors in compound statements.

This is especially true when instrumenting switch statements. Selecting the

switch statement itself will place the instrumentation code at the bottom of

switch (by design), which under most circumstances is never reached. It is

best to place the factors in the individual cases that you want to instrument.

Instrumenting any part of the Response Interval in a switch statement should

be done with extreme care. S-Check is unable to detect the bounds of a case

because it is not a compound statement, but rather a label.

Changing the language type of a fully built experiment. If you change

the language type of a fully built experiment, S-Check eventually fails.

Using S-Check 69

70 Using S-Check

GLOSSARY Glossary

analysis of variance (ANOVA) statistical method used for the purpose of calculating effects.

effect expresses importance of a factor or factor interaction.

experiment an S-Check entity that defines parameters needed to perform an

SPS analysis of the test program.

experiment configuration items that define settings that allow S-Cheek to build (make) the

test program. It also defines other setup information such as

where to mn the experiments and the type of the experiment.

experiment control settings items that define settings directly associated with the experiment,

e.g., factors, plan type, delay value, and replication.

experiment directory the directory in which S-Check was started. Experiments are

saved in this directory under the sub-directory named .scheck.

delay value the amount of delay.

DEX design of experiments.

Using S-Check 71

Glossary

factor parameter that is being varied and tested (e.g., source code seg-

ments, synchronization barriers, etc.).

factor profile a list which provides the number of certain constructs (e.g, a for

loop) in a particular file or files. The profile can be used to aid

factor selection.

host machine
the machine on which S-Check is running.

platform
the environment in which S-Check experiments will run.

replication
indicates the number of times an experiment is performed.

response interval
defines the start and stop locations for the purpose of capturing

the response time.

response time
actual execution time for response interval. A response time is

captured for each trial run.

SPS rank
rank-ordered list of source code segments based on the relative

sensitivity (effects) of the test program to synthetic delays associ-

ated with the code segments.

standard error
estimate of the standard deviation of observed effects.

target machine
the machine on which the S-Check experiments are performed.

test program
executable test program for the experiment.

treatment
instrumentation pattern (of delays) obtained from the experimen-

tal plan for a trial run.

trial
is an instance of the test program with a particular treatment.

work set
set of source code files needed to build the test program.

working directory
the directory in which files are accessed to build the test program.

This directory will either be the directory in which S-Check was

started (experiment will run on loeal machine) or the directory

specified on the Configuration Window for remote machine

access.

72 Using S-Check

REFERENCES References

[1] G. Lyon, R. Snelick, R. Kacker.

Synthetic-perturbation tuning of MIMD programs.

The Journal of Supercomputing 8 (1) (1994), 5-28.

[2] R. Snelick, J. JaJa, R. Kacker and G. Lyon.

Synthetic-perturbation techniques for screening shared

memory programs,

SOFTWARE—Practice and Experience 24 (8) (1994), 679-701.

[4] R. Snelick.

S-Check: A Tool for Tuning Parallel Programs,

Proceedings of the 1 1th International Parallel Processing Symposium,

Geneva, Switzerland (April 1-5, 1997), 107-112.

[4] R.Snelick, M. Indovina, M. Courson, A. Kearsley

Tuning Parallel and Networked Programs with S-Check,

Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA’97),

Las Vegas, Nevada (June 30 - July 3, 1997) Volume I, 21-30.

Using S-Check 73

References

[5] R. Snelick.

S-Check, by Example.

NISTIR 6022, (available at ftp:crar.ncsl.nist.gov)

[6] G. Lyon, R.Kacker, and A. Linz.

A scalability test for parallel code,

SOFTWARE-Practice and Experience 25(12)(1195) 1299-1314.

[7] IBM RS 6000/SP Parallel Environment: Operation and Use,

Volume 1

.

74 Using S-Check

APPENDIX A Error Messages

Appendix A gives a list of common error messages from S-Check. Errors of

this sort are the result of invalid user input or input that is unrecognizable by

S-Check. Adjustments (or input corrections) must be made before S-Check

can proceed in the direction before the error occurred. Note that all other

system functions are frozen until the user acknowledges the error by click-

ing on the OK button in the error popup dialog. The table below provides

possible reasons and solutions to the errors. If you are unfamiliar with how

S-Check instruments the source code, it may be useful to review Appendix

C (Code Instrumentation). The information provided there will let you bet-

ter understand the error messages.

Using S-Check 75

Error Messages

Message Reason/Fix

The program “X” is not in your

path.

The executable “X” is not contained in any of the

directories specified by your PATH variable. You

must quit S-Check and correctly modify your PATH
and restart S-Check.

The program “X” received a

“Y” signal.

The program “X” received a termination signal “Y”

from the UNIX operating system. If “X” was Cln-

stGen or Cparser, this is an S-Check bug and

should be reported. If “X” was a.out, a bug in the

user’s test program exists. If “X” is cc, this is a

compiler bug.

The program “X” received

unknown signal “Y”.

The program “X” has received an unknown signal

“Y” from the Unix operating system. “X” can be

one of the following: a.out, cc, Cparser, or Clnst-

gen.
1

“X” is not a regular file S-Check expected a regular file. Check file type of

file “X”.

The generator has returned

unknown code “X”.

The program CInstGen has terminated with an exit

status unknown to S-Check. This is a bug in S-

Check and should be reported.

Invalid delay value: “X”, delay

is not set.

OR

Invalid delay value: “X”, delay

is still “Y”

The delay value entered manually does not fall in

the range 0 to DELAY_MAX_VALUE.
DELAY_MAX_VALUE can be modified when S-

Checkis installed. It’s default value is 1,000,000.

CTree_Load failed Unable to load the “X.tree” file because it does not

conform to a known format.

Ran out of memory for source

file load.

Ran out of memory (malloc() failed). Close other

windows, stop other processes, increase swap

space, add memory, etc.

bad read for file “X” File “X” does not conform to a known format. If

“X” is config then experiment save file is corrupted.

You may not be able to salvage the saved experi-

ment.

76 Using S-Check

Error Messages

Message Reason/Fix

bad read for response.scheck

file, execution time unknown

The file response.scheck does not conform to a

known format. The Begin (B) and End (E) markers

were probably improperly placed. Check to see if

the E was executed, or that E was executed before

B.

bad factor kind found in config

file

The config file does not conform to a known format.

The file may be corrupted or the file may be incom-

patible with the current S-Check version.

illegal stmt index for factor in

config file

The identified factor index is out of range. The con-

fig file is corrupted. The factor in question is

removed from the factor list.

The parser has returned

unknown code “X”

This is an S-Check bug and should be reported.

Invalid file name, file not saved. An invalid file name was entered. The file was not

saved, try another name.

Can’t load results file: “X” The results file “X” can not be read, contains cor-

rupted data, or host system memory is low.

Using S-Check 77

Error Messages

78 Using S-Check

APPENDIX B Standard Error Table

The standard error of an experiment is used to assess the quality of S-

Check’s results (rank lists and plots). However, depending on the experi-

ment, a standard error may not be provided or its aecuracy may be limited.

In these cases, valid conclusions can still be made from S-Check’s results,

although with diminishing confidence.

The table below shows availability of the standard error for an unreplicated

experiment. The standard error for unreplicated plans is calculated by treat-

ing interaction effects of three or more as error. When third order interaction

effects are not available, second order interaction effects are used for the

standard error estimate. This is the case for resolution IV plans when the

number of factors is ten or greater.

The plan and the number of factors determine the accuracy of the standard

error. A “YES” indicates that the standard error is calculated with sufficient

precision and can be used with confidence in analyzing the results. A
“YES*” indicates that a standard error is provided, but it may not be very

reliable. Typically, unreplicated plans are used when the number of factors

is six or more. When the number of factors is less than six, it is generally

possible to replicate the experiment and calculate the standard error from

replication.

Using S-Check 79

Standard Error Table

A “NO” indicates that no standard error is calculated for the experiment. In

the “YES*” and “NO” cases, inferences of the data can still be made but it

should be done judiciously. For example, when the system load (and noise)

is low, the estimate of the standard error may not be necessary. In such cases

a resolution III plan may be used for screening. In contrast, investigating

interactions between send/receive pairs in a highly congested (noisy) com-

munication system may warrant a sound standard error estimate.

Factors

Plan 2 3 4 5 6-7 8-9 10+

FuU Factorial NO YES* YES* YES YES YES YES

Half Factorial N/A NO NO NO YES YES YES

Quarter Factorial N/A N/A N/A NO YES* YES YES

Resolution IV NO NO NO NO NO NO YES

Resolution III NO NO NO NO NO NO NO

NO: no standard error is possible for the plan

YES: the standard error is calculated with sufficient precision

YES*: the standard error is calculated with insufficient precision

N/A: the plan is not available for the specified number of factors

Note: a standard error is always available when the experiment is replicated.

Decisions about the importance of the standard error for analyzing S-

Check’s results can be aided with information about the test program and

host system. Knowledge from previously-run experiments is especially use-

ful. In addition, the significance of a factor in relationship to other factors in

lieu of adequate standard error information can still be determined through

the use of normal probability plots. If significant outliers exist in the results,

these plots highlight them as points not on a straight line.

80 Using S-Check

APPENDIX C Code Instrumentation

for the CLanguage

Appendix C explains the method in which S-Check instruments the source

code program.

Given the file foo.c, S-Check runs the default C preprocessor for the purpose

of including include files and expanding macros. The source code output

from the C preprocessor is then analyzed with the Cparser program. The

Cparser builds an abstract tree containing lexical and semantic information

about the source code. This information is stored in the file foo.tree. A sepa-

rate tree is built for each source file. S-Check (CTree library) uses the

abstract tree to make inferences about the code and to re-generate the origi-

nal source code with instrumentation. Inferences about the code allow for

basic block factor selection, requests such as “instrument all while loops in

function X()” are possible.

To instrument and re-generate the source code, two inputs to the code gen-

erator program (CInstGen) are required: the abstract tree and the user’s

instrumentation requests. Instrumentation requests are gathered and trans-

lated by S-Check and are saved in foo.scheck. The files foo.scheck and foo.tree

are fed as inputs to CInstGen which yields the instrumented source code

(foo.scheck.c). This code is then compiled with a compiler of the user’s

Using S-Check 81

Code Instrumentation for the C Language

choice to obtain object code (foo.scheck.o). Other object files are then linked

together to create the executable program.

82 Using S-Check

APPENDIX D Linking S-Check to Batch

Queuing Systems

Appendix D describes how to build Unix shell scripts to interface S-Check

to various batch queuing systems (BQS). The advent of distributed comput-

ing has sparked a slew of systems where a scheduler program controls jobs

on the computing system. Examples of such scheduling systems include

LoadLeveler, DQS, and LSF. S-Check provides an interface to LoadLeveler

and will provide interfaces to other systems in the future. However, the task

of supporting all systems would be exhausting. In lieu of this, S-Check pro-

vides a platform type called Generic so that any queuing system can inter-

face to S-Check provided that suitable scripts can be developed. We
describe and show an example of how to write such scripts in this Appen-

dix. The scripts need to be written and installed before S-Check can be

started. Once this is complete, the configuration process proceeds as shown

in Chapter 3 for the LoadLeveler example.

Writing BQS interface scripts. In order to be as generic as possible, S-

Check calls a set of shell scripts to manage jobs in a queuing system envi-

ronment. These shell scripts may be easily modified to suit an unusual con-

figuration or a non-supported architecture. Each script performs one of the

three basic actions:

• run the job

Using S-Check 83

Linking S-Check to Batch Queuing Systems

• kill the job

• check the status of the job

The requirements for each is described below:

1) Run (run.sh)

Runs the executable using system job control commands and returns the id

ofjob for use by other scripts. It performs any necessary modification ofjob

control scripts in order to set the executable, pathname, and environment

variables.

Inputs:

executable-name - full pathname to the executable

trial_number - index of the current trial

command_Jile - name of the script file relative to the experiment directory

arguments - for the application as given in the configuration window

Output:

Job identification string, e.g., “danube.l 164”

Exit codes:

0 on success

1 on failure

Notes:

• the trial number starts at 1 . This may be used for initializing the environ-

ment.

• for the last run, the trial number is prefixed with {e.g., _32). This

may be used to trigger cleanup code.

84 Using S-Check

Linking S-Check to Batch Queuing Systems

• in addition to the command line arguments, run.sh receives some infor-

mation from the following environment variables:

SCHECKDELAY : delay value

SCHECKFACTORS : factor array

The script should make sure that these variables are made available in the

executable environment (for example using export for sh).

• the command file is relative to the experiment directory, which is located

two levels below the directory holding the executable {e.g., if the execut-

able is fsome_dir}/a.out, the command file is in {some_dir

2) Kill (kilLsh)

Terminates a running job using the system’s job control commands.

Input:

Job identification string, as returned by run.sh

Output:

none

Exit codes:

0 on success

1 on failure

3) Status (status.sh)

Checks run status ofjob using the system’s job control commands and iden-

tifies it as one of three status indicators: pending, running, or complete.

Input:

Job identification string, as returned by run.sh

Output:

“PENDING”
“RUNNING”
“DONE”

Exit codes:

Using S-Check 85

Linking S-Check to Batch Queuing Systems

1 - job pending

2 - job running

3 - job complete

4 - indeterminate status

Example for LoadLeveler. Below are example shell scripts used to inter-

face S-Check to LoadLeveler’s queuing system. This example can be used

as a prototype for writing interface scripts to link to your particular environ-

ment.

LoadLeveler Run (run.sh)

#!/bin/sh

run.sh for IBM SP2 using LoadLeveler

Input: executable triaLnumber commandJile [args for the application]

triaLnumber prefixed with _ (eg. _42) if this is the last run

Output: job identification string, eg “danube.1 164”

Note: when a copy is made from the original command file, the following

tags are replaced by their corresponding value

#

#

#

#

#

#

#

#

#

@SCHECKJnitialdir@ : initial directory where the job should start

@SCHECK_program@ : local program name in the initial directory

@SCHECK_arguments@ : user arguments as given in the configuration window

@SCHECK_trialnumber@ : trial number

@SCHECKJasttrial@ : set to 1 if this is the last trial, 0 otherwise

@SCHECK_delay@ : delay value as in the SCHECKDELAY env. variable

@SCHECK_factors@ : factor array as in the SCHECKFACTORS env. variable

@SCHECK_variables@ : insert some sh/bash/ksh code to set and export the

SCheck environment variables in the command file

default_method=0

initialdir='dirname $L

program='basename $1'

fullpath=$1

command_file=$3

this holds the index of this trial

if
[
'echo $2 I grep -c V' -eq 0]; then

trialnumber=$2

iasttrial=0

86 Using S-Check

Linking S-Check to Batch Queuing Systems

else

trialnumber=' echo $2 I sed ‘s/M/’'

lasttrlal=1

fi

get rid of the executable name, commandjile and trial # to get the arguments

shift

shift

shift

arguments=”$*”

make sure that the critical tags are here, otherwise we’ll use the

default (stupid) method

if
[
'grep -c “@SCHECK_variables@” $initialdir/../../$command_file' -eq 0]; then

default_method=1

fi

if
['grep -c “@SCHECK_program@” $initialdir/../../$command_file' -eq 0]; then

default_method=1

fi

make a copy of the command file, replacing the tags by their value

Using a caret(^) as a field separator to be on a safer side

sed
“

s''@SCHECKJnitialdir@^$initialdir^

s^@SCHECK_program@''$program^

s^@SCHECK_arguments@^$arguments^

s^@SCHECK_trialnumber@^$trialnumber^

s^@SCHECK_lasttrial@'^$lasttrial^

s^@SCH ECK_delay@/^$SCHECKFACTORS^g

s^@SCHECKJactors@''$SCHECKDELAY^

/@SCHECK_variables@/c\\

S-Check variables added below ## W

SCHECKDELAY=$SCHECKDELAY W

export SCHECKDELAYW
SCHECKFACTORS=$SCHECKFACTORS W

export SCHECKFACTORS”\

$initialdir/../../$command_file> $initialdir/scheck.$command_file

outfile=$initialdir/scheck.$command_file

if
[
$default_method -eq 1]; then

issue a warning, but only once, for the first run

Using S-Check 87

Linking S-Check to Batch Queuing Systems

if
[
$trialnumber -eq 1]; then

echo\

“Warning: @SCHECK_program@/@SCHECK_variables@ not in $commandJile” >& 2

echo “Using the default method” >& 2

fi

output the Scheck stuff at the end

echo “## S-Check added the lines below ##” » $outfile

echo SCHECKDELAY=$SCHECKDELAY » $outfile

echo export SCHECKDELAY » $outfile

echo SCHECKFACTORS=$SCHECKFACTORS » $outfile

echo export SCHECKFACTORS » $outfile

echo echo RUNNING SCHECK TEST with the default method » $outfile

echo /usr/bin/poe $fullpath » $outfile

fi

if text='llsubmit Soutfile'; then

llsubmit returned 0

echo 'echo $text I cut -d’
‘

-f4 I sed ‘sA”//g’

'

exitO

else

llsubmit failed

echo “ERROR”

exit 1

fi

LoadLeveler Kill (kill.sh)

#!/bin/sh

kill.sh for IBM SP2 running LoadLeveler

Input
: job identifier

Output : exit status (0 on success, 1 on failure)

if llcancel $1 ;
then

exitO

else

exit 1

fi

88 Using S-Check

Linking S-Check to Batch Queuing Systems

LoadLeveler Status (status.sh)

#!/bin/sh

S-Check

status.sh for IBM SP2 running LoadLeveler

Input
;
job id

Output: RUNNING I PENDING I DONE

retvalue='llq $1 I awk
{
printf \\$5

}”

'

case $retvalue in

1 1 P I D I S I H I SH I ST

)

echo PENDING

exit 1;:

R)

echo RUNNING

exit 2;;

““
I C I RM I RP

)

echo DONE
exit 3;;

echo “Unknown status!”

exit 4;:

esac

Using S-Check 89

Linking S-Check to Batch Queuing Systems

90 Using S-Check

Index

A
Arguments text field 29

artificial delay 49

Automatic Factor Selection 17,38

B
barrier test 6, 30

Batch Queuing Systems 28, 83

build. See experiment

C
C 3,33,81

C-flag 29

CInstGen 81

code instrumentation 36

Command line arguments 29

Configuration Window 15-31, 46

Configure menu selection 46

Cparser 81

CTree 81

D
default C-flags 29

delay value 42

delay value, setting the 48, 54

design of experiment (DEX) 2, 35, 49

Directory Contents 29

DQS 83

E

error

filter 60, 63

error messages 48

Errors 75

exiting S-Check 12, 46

experiment 9

building 48, 53

creating 12

deleting 12

noise 48, 52

opening 46

plan 49

restarting 54

Using S-Check 91

Index

running 53-55

state of 54

stopping 54

suspending 54

Experiment Control Window 12,45-53

experiment design/plan

full factorial 49, 50

half factorial 49, 50

quarter factorial 49, 5

1

resolution III 49, 5

1

resolution rv 49,51

experiment directory 1

1

experiment information

Factors 53

Overhead Est. 53

Runs Required 53

Status 53, 54

Time Estimate 53

Trial 53

Experiment List Window 12-15

External Profile 57

F

factor

selection 33-38,46

Factor Editor 33, 35^2, 46

Factor Management 40

Factor Profile 38

factor selection mode 41

File menu 15

FORTRAN 3,28,33,43

H
Help 3

I

IBM SP2 30

input/output redirection 30

interactions 49

L

LAM 17,26-28

Id Flags 29

loader/linker flags 29

LoadLeveler 17, 18-23, 28, 83

LSF 83

M
messages, on Experiment Control

Window 46

MPI 2, 17, 26-28

P

plots

Absolute Effects 64

Absolute Normal Quantile 64

Half Effects 64

Normal Quantile 64

POE 17,23

postscript

save list effects 62

save plots effects 65

PVM 2, 17, 24-26

Q
Quit S-Check menu selection 46

R

replication, setting 52

response interval

setting 40^2
response time 40, 54

results

list effects 59-62

Multiple Displays 65

plot effects 62-65

saving 46, 65-??

viewing 59-66

S

Save As menu selection 12, 46

Save menu selection 46

scaling test 6, 30

SCHECKDELAY 85

SCHECKFACTORS 85

screening test 5, 30

Select Response button 35, 41

select response mode 41

Set Delay menu selection 48

SGI Challenge 15

92 Using S-Check

Index

Show Delay menu selection 49

SPS 1

SPS technique 5-6

standard error 79

Synthetic Perturbation Screening 1, 5

T
test program 1

1

V
Viewing Internal Results 55

W
warning messages 48

work set 29, 46, 53

Using S-Check 93

Index

94 Using S-Check

How to install S-Check

S-Check software can be obtained via the ftp site www.scheck.nist.gov. You can also get to this

location by accessing http://www.scheck.nist.gov. S-Check 3.0 release works on parallel SGI sys-

tems, IBM’s SP machines, homogenous SUN, SGI, and RS6000 workstation clusters using PVM
or MPI, and PCs running Linux. S-Check supports multiple languages including C and FOR-
TRAN. The graphical interface is written with the OSF Motif toolkit (version 1.2). You must have

the Motif hbraries to compile S-Check.

Steps:

1. Retrieve the compressed tar file scheck_3.0.taKgz (or .Z) from the scheck directory.

2. Use gunzip to un-compress the file.

% gunzip scheck_3.0.tar.gz

3. Use tar to extract the files.

% tar xf scheck_3.0.tar

4. Change directory to scheck_3.0

% cd scheck_3.0

5. Configure the package for your system.

% configure

This command automatically configures the software source code package

for your particular system. Among other things, it builds the Makefiles

necessary to create the executables.

6. Make the executables.

% make

7. Make sure that your path includes the scheck_3.0/bin directory or move the executables (e.g.,

CInstGen, Cparser, CppFilter, scheck, etc.) in this directory to a directory in your path.

8. Make sure the resource file Scheck is in your home directory on the machine your running S-

Check on. It should be there if Step 6 executed correctly.

9. Refer to the user’s guide, “Using S-Check” or “S-Check, by Example”, to get started with the

tool.

Note: S-Check has a X-window user interface, so remember to set your DISPLAY environment

variable to your local X-server and add the chent machine to your xhost hst. Use the conunand

setenv DISPLAY your_X-server_machine:0 on the chent machine to set the DISPLAY variable, and

the command xhost +client_machine on your local X-server to aUow the client machine to open a

window on your console.

Send questions or comments to scheck-tool@www.scheck.nist.gov.

getting started

• put all “.c” parts of test program in same directory

• type the command scheck

S-Check Quick-Reference

Release 3.0

(some transitions omitted)

Written by; Gordon Lyon

V

SCheck: Experiment List Window
• select <name> from Experiment List Window to rerun or modify old experiment

or

• type in <new experiment name> to build completely new experiment

SCheck: Configuration Window

• select directory contents and add to work set. Set flags as needed for host parallel system.

Exit via OK button.

^ SCheck: Experiment Control Window

• set DEX Plans on automatic, Replication(s) = 1 or 2

• double-click on files to establish or change response timing interval and code segments (fac-

tors) of interest

SCheck: Factor Editor Window
• click on code parts suspected as bottlenecks. A black mark will indicate selection. A sec-

ond click deletes the selection. The window indicates the number of selected factors. Factor

selection is always active unless you hit the response selection button. Exit via OK.
• the Select Response button in this window sets points B-E between which experiment tim-

ings will occur. This response is usually set to catch run time for the whole program, so the

window margin markers ofB and E should be set in the main driver. (The code being instru-

mented is indicated in the upper left-hand comer of the window.) The cursor will change to

red and be directional during response point setting.

• exit of the window leads back to the Experiment Control Window, where other files can be

set up or the experiment begun (see below).

SCheck: Experiment Control Window
• hit the Build button to initiate compilation and selection of delay size. Or, you can use the

Delay Value text field to set the delay manually, should you wish to do so.

• when the Start button becomes enabled, hit it to begin (errors will prevent this)

• when the experiment is done, use the Display menu selection to plot or list results.

List or Plot Effects Window
• if there is an error estimate, the error filter can be set in multiples of the standard error {e.g.,

2SE is a 95% confidence acceptance level). Any effect less than the Standard Error (SE) is

probably not significant. Even 2SE is marginal for SCheck Technology.

setup

con-

tinues

setup

stage

done

